1,660 research outputs found
Photonic heat conduction in Josephson-coupled Bardeen-Cooper-Schrieffer superconductors
We investigate the photon-mediated heat flow between two Josephson-coupled
Bardeen-Cooper-Schrieffer (BCS) superconductors. We demonstrate that in
standard low temperature experiments involving temperature-biased
superconducting quantum interference devices (SQUIDs), this radiative
contribution is negligible if compared to the direct galvanic one, but it
largely exceeds the heat exchanged between electrons and the lattice phonons.
The corresponding thermal conductance is found to be several orders of
magnitude smaller, for real experiments setup parameters, than the universal
quantum of thermal conductance, kappa_0(T)=pi k_B^2T/6hbar.Comment: 8 pages, 6 figure
Ferromagnetic insulator-based superconducting junctions as sensitive electron thermometers
We present an exhaustive theoretical analysis of charge and thermoelectric
transport in a normal metal-ferromagnetic insulator-superconductor (NFIS)
junction, and explore the possibility of its use as a sensitive thermometer. We
investigated the transfer functions and the intrinsic noise performance for
different measurement configurations. A common feature of all configurations is
that the best temperature noise performance is obtained in the non-linear
temperature regime for a structure based on an europium chalcogenide
ferromagnetic insulator in contact with a superconducting Al film structure.
For an open-circuit configuration, although the maximal intrinsic temperature
sensitivity can achieve nKHz, a realistic amplifying chain will
reduce the sensitivity up to KHz. To overcome this limitation
we propose a measurement scheme in a closed-circuit configuration based on
state-of-art SQUID detection technology in an inductive setup. In such a case
we show that temperature noise can be as low as nKHz. We also
discuss a temperature-to-frequency converter where the obtained thermo-voltage
developed over a Josephson junction operated in the dissipative regime is
converted into a high-frequency signal. We predict that the structure can
generate frequencies up to GHz, and transfer functions up to
GHz/K at around K. If operated as electron thermometer, the device
may provide temperature noise lower than nKHz thereby being
potentially attractive for radiation sensing applications.Comment: 11 pages, 10 color figure
On the joint distribution of digital sums
AbstractLet s(n) be the sum of the digits of n written to the base b. We determine the joint distribution (modulo m) of the sequences s(k1n), …, s(kln). In the case where m and b − 1 are relatively prime, we find that their values are equally distributed among l-tuples of residue classes (modulo m)
Geometric quantum gates with superconducting qubits
We suggest a scheme to implement a universal set of non-Abelian geometric
transformations for a single logical qubit composed of three superconducting
transmon qubits coupled to a single cavity. The scheme utilizes an adiabatic
evolution in a rotating frame induced by the effective tripod Hamiltonian which
is achieved by longitudinal driving of the transmons. The proposal is
experimentally feasible with the current state of the art and could serve as a
first proof of principle for geometric quantum computing.Comment: 7 pages, 5 figure
Ground-state geometric quantum computing in superconducting systems
We present a theoretical proposal for the implementation of geometric quantum
computing based on a Hamiltonian which has a doubly degenerate ground state.
Thus the system which is steered adiabatically, remains in the ground-state.
The proposed physical implementation relies on a superconducting circuit
composed of three SQUIDs and two superconducting islands with the charge states
encoding the logical states. We obtain a universal set of single-qubit gates
and implement a non-trivial two-qubit gate exploiting the mutual inductance
between two neighboring circuits, allowing us to realize a fully geometric
ground-state quantum computing. The introduced paradigm for the implementation
of geometric quantum computing is expected to be robust against environmental
effects.Comment: 9 pages, 5 figures. Final version with notation and typos correcte
Decoherence in adiabatic quantum evolution - application to Cooper pair pumping
One of the challenges of adiabatic control theory is the proper inclusion of
the effects of dissipation. Here, we study the adiabatic dynamics of an open
two-level quantum system deriving a generalized master equation to consistently
account for the combined action of the driving and dissipation. We demonstrate
that in the zero temperature limit the ground state dynamics is not affected by
environment. As an example, we apply our theory to Cooper pair pumping which
demonstrates the robustness of ground state adiabatic evolution.Comment: 7 pages, derivation of the master equation in the appendi
Evaluation of the energy utilization index in sheep milk cooling systems
The energy consumption of sheep milk cooling systems (MCSs) was quantified in this study to provide original information filling a literature gap on the impact of sheep milk cooling on the energy and economic balance in dairy farms. Performance and energy monitoring tests were conducted simultaneously on 22 MCSs in Sardinia (Italy). The results determined the cooling time as a function of the performance class and number of milkings. The Energy Utilization Index (EUI) was applied to measure the energy required to cool down the milk and estimate the incidence on its price. The average EUI was 1.76 kWh 100 L−1 for two-milkings and 2.43 kWh 100 L−1 for four-milkings MCSs, whereas the CO2 emissions ranged from 998 to 1378 g CO2 100 L−1 for two- and four-milkings MCSs, respectively. The estimated energy consumption for the storage of refrigerated sheep milk was 0.12 kWh 100 L−1. The malfunctioning MCSs averagely consumed 31% more energy than regular systems. The energy cost for cooling accounted for 0.61% on the current sheep milk price in Italy. Based on the analysis, the reported EUI values can be used as a preliminary indicator of the regular operation of MCSs
Dynamical properties across a quantum phase transition in the Lipkin-Meshkov-Glick model
It is of high interest, in the context of Adiabatic Quantum Computation, to
better understand the complex dynamics of a quantum system subject to a
time-dependent Hamiltonian, when driven across a quantum phase transition. We
present here such a study in the Lipkin-Meshkov-Glick (LMG) model with one
variable parameter. We first display numerical results on the dynamical
evolution across the LMG quantum phase transition, which clearly shows a
pronounced effect of the spectral avoided level crossings. We then derive a
phenomenological (classical) transition model, which already shows some
closeness to the numerical results. Finally, we show how a simplified quantum
transition model can be built which strongly improve the classical approach,
and shed light on the physical processes involved in the whole LMG quantum
evolution. From our results, we argue that the commonly used description in
term of Landau-Zener transitions is not appropriate for our model.Comment: 7 pages, 5 figures; corrected reference
Phase-coherent solitonic Josephson heat oscillator
Since its recent foundation, phase-coherent caloritronics has sparkled continuous interest giving rise to numerous concrete applications. This research field deals with the coherent manipulation of heat currents in mesoscopic superconducting devices by mastering the Josephson phase difference. Here, we introduce a new generation of devices for fast caloritronics able to control local heat power and temperature through manipulation of Josephson vortices, i.e., solitons. Although most salient features concerning Josephson vortices in long Josephson junctions were comprehensively hitherto explored, little is known about soliton-sustained coherent thermal transport. We demonstrate that the soliton configuration determines the temperature profile in the junction, so that, in correspondence of each magnetically induced soliton, both the flowing thermal power and the temperature significantly enhance. Finally, we thoroughly discuss a fast solitonic Josephson heat oscillator, whose frequency is in tune with the oscillation frequency of the magnetic drive. Notably, the proposed heat oscillator can effectively find application as a tunable thermal source for nanoscale heat engines and coherent thermal machines
- …