493 research outputs found

    Transmittivity measurements by means of squeezed vacuum light

    Full text link
    A method for measuring the transmittivity of optical samples by using squeezed--vacuum radiation is illustrated. A squeezed vacuum field generated by a below--threshold optical parametric oscillator is propagated through a nondispersive medium and detected by a homodyne apparatus. The variance of the detected quadrature is used for measuring the transmittivity. With this method it is drastically reduced the number of photons passing through the sample during the measurement interval. The results of some tests are reported.Comment: 14 pages, 8 figure

    Tunable non-Gaussian resources for continuous-variable quantum technologies

    Full text link
    We introduce and discuss a set of tunable two-mode states of continuous-variable systems, as well as an efficient scheme for their experimental generation. This novel class of tunable entangled resources is defined by a general ansatz depending on two experimentally adjustable parameters. It is very ample and flexible as it encompasses Gaussian as well as non-Gaussian states. The latter include, among others, known states such as squeezed number states and de-Gaussified photon-added and photon-subtracted squeezed states, the latter being the most efficient non-Gaussian resources currently available in the laboratory. Moreover, it contains the classes of squeezed Bell states and even more general non-Gaussian resources that can be optimized according to the specific quantum technological task that needs to be realized. The proposed experimental scheme exploits linear optical operations and photon detections performed on a pair of uncorrelated two--mode Gaussian squeezed states. The desired non-Gaussian state is then realized via ancillary squeezing and conditioning. Two independent, freely tunable experimental parameters can be exploited to generate different states and to optimize the performance in implementing a given quantum protocol. As a concrete instance, we analyze in detail the performance of different states considered as resources for the realization of quantum teleportation in realistic conditions. For the fidelity of teleportation of an unknown coherent state, we show that the resources associated to the optimized parameters outperform, in a significant range of experimental values, both Gaussian twin beams and photon-subtracted squeezed states.Comment: 13 pages, 7 figure

    Trapped Ions in Laser Fields: a Benchmark for Deformed-Quantum Oscillators

    Get PDF
    Some properties of the non--linear coherent states (NCS), recognized by Vogel and de Matos Filho as dark states of a trapped ion, are extended to NCS on a circle, for which the Wigner functions are presented. These states are obtained by applying a suitable displacement operator Dh(α)D_{h}(\alpha) to the vacuum state. The unity resolutions in terms of the projectors ∣α,h><α,h∣| \alpha, h> < \alpha, h| . Dh(α)D_{h}(\alpha) is also used for introducing the probability distribution funtion ρA,h(z)\rho_{A,h}(z) while the existence of a measure is exploited for extending the P-representation to these states. The weight of the n-th Fock state of the NCS relative to a trapped ion with Lamb-Dicke parameter η,\eta , oscillates so wildly as nn grows up to infinity that the normalized NCS fill the open circle η−1\eta ^{-1} in the complex α\alpha -plane. In addition this prevents the existence of a measure including normalizable states only. This difficulty is overcome by introducing a family of deformations which are rational functions of n, each of them admitting a measure. By increasing the degree of these rational approximations the deformation of a trapped ion can be approximated with any degree of accuracy and the formalism of the P-representation can be applied

    Full characterization of Gaussian bipartite entangled states by a single homodyne detector

    Full text link
    We present the full experimental reconstruction of Gaussian entangled states generated by a type--II optical parametric oscillator (OPO) below threshold. Our scheme provides the entire covariance matrix using a single homodyne detector and allows for the complete characterization of bipartite Gaussian states, including the evaluation of purity, entanglement and nonclassical photon correlations, without a priori assumptions on the state under investigation. Our results show that single homodyne schemes are convenient and robust setups for the full characterization of OPO signals and represent a tool for quantum technology based on continuous variable entanglement.Comment: 4 pages, 3 figures, slightly longer version of published PR

    Quantum tomography as a tool for the characterization of optical devices

    Get PDF
    We describe a novel tool for the quantum characterization of optical devices. The experimental setup involves a stable reference state that undergoes an unknown quantum transformation and is then revealed by balanced homodyne detection. Through tomographic analysis on the homodyne data we are able to characterize the signal and to estimate parameters of the interaction, such as the loss of an optical component, or the gain of an amplifier. We present experimental results for coherent signals, with application to the estimation of losses introduced by simple optical components, and show how these results can be extended to the characterization of more general optical devices
    • 

    corecore