22 research outputs found

    Impact of dendritic polymers on nanomaterials

    Get PDF
    For many years scientists have employed dendritic polymers (dendrimers and hyperbranched polymers) in association with other nanomaterials (such as graphene, carbon nanotubes, proteins and peptides, as well as metallic nanoparticles) to synthesize hybrid nanomaterials with improved biocompatibility, biodegradability, functionality, physicochemical properties and the capability of carrying other molecules. However, more recent studies demonstrate that one of the less noticed effects and newly observed facets of dendritic polymers is their role in changing the structure (shape, size and sheet multiplicity) of the obtained hybrid nanomaterials, upon covalent and noncovalent interactions. In this review, we intend to have a more specialized look at these reports and discuss the ‘whys’ and ‘hows’ of this phenomenon

    Tumour brain: pre‐treatment cognitive and affective disorders caused by peripheral cancers

    Get PDF
    People that develop extracranial cancers often display co-morbid neurological disorders, such as anxiety, depression and cognitive impairment, even before commencement of chemotherapy. This suggests bidirectional crosstalk between non-CNS tumours and the brain, which can regulate peripheral tumour growth. However, the reciprocal neurological effects of tumour progression on brain homeostasis are not well understood. Here, we review brain regions involved in regulating peripheral tumour development and how they, in turn, are adversely affected by advancing tumour burden. Tumour-induced activation of the immune system, blood–brain barrier breakdown and chronic neuroinflammation can lead to circadian rhythm dysfunction, sleep disturbances, aberrant glucocorticoid production, decreased hippocampal neurogenesis and dysregulation of neural network activity, resulting in depression and memory impairments. Given that cancer-related cognitive impairment diminishes patient quality of life, reduces adherence to chemotherapy and worsens cancer prognosis, it is essential that more research is focused at understanding how peripheral tumours affect brain homeostasis

    Core-shell Îł-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>/PCA/Ag-NPs hybrid nanomaterials as a new candidate for future cancer therapy

    No full text
    In the current study, Îł-Fe2O3/SiO 2/PCA/Ag-NPs hybrid nanomaterials were successfully synthesized and characterized. At first, prepared Îł-Fe2O3 core nanoparticles were modified by SiO2 layer. Then they were covered by poly citric acid (PCA) via melting esterification method as well. PCA shell acts as an effective linker, and provides vacancies for conveying drugs. Moreover, this shell as an effective capping agent directs synthesis of silver nanoparticles (Ag-NPs) via in situ photo-reduction of silver ions by sunlight-UV irradiation. This system has several benefits as a suitable cancer therapy nanomaterial. Magnetic nanoparticles (MNPs) can guide Ag-NPs and drugs to cancer cells and then Ag-NPs can affect those cells via Ag-NPs anti-angiogenesis effect. Size and structure of the prepared magnetic hybrid nanomaterials were characterized using FTIR and UV-Vis spectra, AFM and TEM pictures and XRD data.</p

    Core–Shell γ- Fe

    No full text

    Evidence-based prevention and treatment of osteoporosis after spinal cord injury: a systematic review

    No full text
    © 2017, Springer-Verlag Berlin Heidelberg. Purpose: Spinal cord injury (SCI) results in accelerated bone mineral density (BMD) loss and disorganization of trabecular bone architecture. The mechanisms underlying post-SCI osteoporosis are complex and different from other types of osteoporosis. Findings of studies investigating efficacy of pharmacological or rehabilitative interventions in SCI-related osteoporosis are controversial. The aim of this study was to review the literature pertaining to prevention and evidence-based treatments of SCI-related osteoporosis. Methods: In this systematic review, MEDLINE, EMBASE, PubMed, and the Cochrane Library were used to identify papers from 1946 to December 31, 2015. The search strategy involved the following keywords: spinal cord injury, osteoporosis, and bone loss. Results: Finally, 56 studies were included according to the inclusion criteria. Only 16 randomized controlled trials (involving 368 patients) were found. We found following evidences for effectiveness of bisphosphonates in prevention of BMD loss in acute SCI: very low-quality evidence for clodronate and etidronate, low-quality evidence for alendronate, and moderate-quality evidence for zoledronic acid. Low-quality evidence showed no effectiveness for tiludronate. In chronic SCI cases, we found low-quality evidence for effectiveness of vitamin D 3 analogs combined with 1-alpha vitamin D 2 . However, low-quality inconsistent evidence exists for alendronate. For non-pharmacologic interventions, very low-quality evidence exists for effectiveness of standing with or without treadmill walking in acute SCI. Other low-quality evidences indicated that electrical stimulation, tilt-table standing, and ultrasound provide no significant effects. Very low-quality evidence did not show any benefit for low-intensity (3 days per week) cycling with functional electrical stimulator in chronic SCI. Conclusions: No recommendations can be made from this review, regarding overall low quality of evidence as a result of high risk of bias, low sample size in most of the studies, and notable heterogeneity in type of intervention, outcome measurement, and duration of treatment. Therefore, future high-quality RCT studies with higher sample sizes and more homogeneity are strongly recommended to provide high-quality evidence and make applicable recommendations for prevention and treatment of SCI-related bone loss
    corecore