8,286 research outputs found

    nuSTORM: Neutrinos from Stored Muons

    Get PDF
    nuSTORM (Neutrinos from STORed Muons) is a proposed storage ring facility to deliver beams of muon antineutrinos and electron neutrinos from positive muon decays (muon neutrinos and electron antineutrinos from negative muon decays), with a central muon momentum of 3.8 GeV/c and a momentum acceptance of 10%. The facility will allow searches for eV-scale sterile neutrinos at better than 10 sigma sensitivity, it will be able to provide measurements of neutrino and antineutrino-nucleus scattering cross sections with percent-level precision and will serve as a first step towards developing muon accelerators for particle physics. We report on the physics capabilities of the nuSTORM facility and we specify the main features of its design, which does not require any new technology. The flux of the neutrino beam can be determined with percent-level accuracy to perform cross-section measurements for future neutrino oscillation experiments and to resolve the hints for eV-scale sterile neutrinos. nuSTORM may be considered as a first step towards a Neutrino Factory and a Muon Collider.Comment: 10 pages, 5 figures, Prospects in Neutrino Physics Conference (NuPhys). eConf (CNUM: C14-12-15

    Electron-phonon interaction in Fe-based superconductors: Coupling of magnetic moments with phonons in LaFeAsO1−x_{1-x}Fx_{x}

    Full text link
    The coupling of Fe magnetic moments in LaFeAsO1−x_{1-x}Fx_{x} with the As A1gA_{1g} phonon is calculated. We present first principles calculations of the atomic and electronic structure of LaFeAsO as a function of electron doping. We perform calculations using the virtual crystal approximation as well as supercell calculations with F substitutional impurity atoms. The results validate the virtual crystal approximation for the electronic structure near the Fermi level. Its is found that the electronic density of states at the Fermi level is maximum for x=0.125, enhancing the electron-phonon interaction. An additional increase of the electron-phonon parameter λ\lambda is obtained if the coupling between the A1gA_{1g} phonon and the Fe magnetic moment is included. It is found that the electron-phonon interaction can be one order of magnitude larger than its value if no spin resolution is included in the calculation. The implications of these results on the superconducting transition are discusse

    Optical signatures of quantum delocalization over extended domains in photosynthetic membranes

    Full text link
    The prospect of coherent dynamics and excitonic delocalization across several light-harvesting structures in photosynthetic membranes is of considerable interest, but challenging to explore experimentally. Here we demonstrate theoretically that the excitonic delocalization across extended domains involving several light-harvesting complexes can lead to unambiguous signatures in the optical response, specifically, linear absorption spectra. We characterize, under experimentally established conditions of molecular assembly and protein-induced inhomogeneities, the optical absorption in these arrays from polarized and unpolarized excitation, and demonstrate that it can be used as a diagnostic tool to determine the coherent coupling among iso-energetic light-harvesting structures. The knowledge of these couplings would then provide further insight into the dynamical properties of transfer, such as facilitating the accurate determination of F\"orster rates.Comment: 4 figures and Supplementary information with 7 figures. To appear in Journal of physical chemistry A, 201

    Notas para el estudio del "Gypaëtus barbatus" en los Pirineos Orientales

    Get PDF

    Heavy-to-light scalar form factors from Muskhelishvili-Omn\`es dispersion relations

    Full text link
    By solving the Muskhelishvili-Omn\`es integral equations, the scalar form factors of the semileptonic heavy meson decays D→πℓˉνℓD\to\pi \bar \ell \nu_\ell, D→KˉℓˉνℓD\to \bar{K} \bar \ell \nu_\ell, Bˉ→πℓνˉℓ\bar{B}\to \pi \ell \bar\nu_\ell and Bˉs→Kℓνˉℓ\bar{B}_s\to K \ell \bar\nu_\ell are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omn\`es matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q2=0q^2=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q2=0q^2=0, we obtain ∣Vcd∣=0.244±0.022|V_{cd}|=0.244\pm 0.022, ∣Vcs∣=0.945±0.041|V_{cs}|=0.945\pm 0.041 and ∣Vub∣=(4.3±0.7)×10−3|V_{ub}|=(4.3\pm 0.7)\times10^{-3} for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q2=0q^2=0: ∣f+D→η(0)∣=0.01±0.05|f_+^{D\to\eta}(0)|=0.01\pm 0.05, ∣f+Ds→K(0)∣=0.50±0.08|f_+^{D_s\to K}(0)|=0.50 \pm 0.08, ∣f+Ds→η(0)∣=0.73±0.03|f_+^{D_s\to\eta}(0)|=0.73\pm 0.03 and ∣f+Bˉ→η(0)∣=0.82±0.08|f_+^{\bar{B}\to\eta}(0)|=0.82 \pm 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q2−q^2-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.Comment: includes further discussions and references; matches the accepted versio

    Energy conversion in Purple Bacteria Photosynthesis

    Get PDF
    The study of how photosynthetic organisms convert light offers insight not only into nature's evolutionary process, but may also give clues as to how best to design and manipulate artificial photosynthetic systems -- and also how far we can drive natural photosynthetic systems beyond normal operating conditions, so that they can harvest energy for us under otherwise extreme conditions. In addition to its interest from a basic scientific perspective, therefore, the goal to develop a deep quantitative understanding of photosynthesis offers the potential payoff of enhancing our current arsenal of alternative energy sources for the future. In the following Chapter, we consider the trade-off between dynamics, structure and function of light harvesting membranes in Rps. Photometricum purple bacteria, as a model to highlight the priorities that arise when photosynthetic organisms adapt to deal with the ever-changing natural environment conditions.Comment: Chapter, to appear in Photosynthesis 2011, INTEC

    Energetics and dynamics of H2_2 adsorbed in a nanoporous material at low temperature

    Full text link
    Molecular hydrogen adsorption in a nanoporous metal organic framework structure (MOF-74) was studied via van der Waals density-functional calculations. The primary and secondary binding sites for H2_2 were confirmed. The low-lying rotational and translational energy levels were calculated, based on the orientation and position dependent potential energy surface at the two binding sites. A consistent picture is obtained between the calculated rotational-translational transitions for different H2_2 loadings and those measured by inelastic neutron scattering exciting the singlet to triplet (para to ortho) transition in H2_2. The H2_2 binding energy after zero point energy correction due to the rotational and translational motions is predicted to be ∼\sim100 meV in good agreement with the experimental value of ∼\sim90 meV.Comment: 5 pagers, 4 figures. added reference

    Light-harvesting in bacteria exploits a critical interplay between transport and trapping dynamics

    Full text link
    Light-harvesting bacteria Rhodospirillum Photometricum were recently found to adopt strikingly different architectures depending on illumination conditions. We present analytic and numerical calculations which explain this observation by quantifying a dynamical interplay between excitation transfer kinetics and reaction center cycling. High light-intensity membranes (HLIM) exploit dissipation as a photo-protective mechanism, thereby safeguarding a steady supply of chemical energy, while low light-intensity membranes (LLIM) efficiently process unused illumination intensity by channelling it to open reaction centers. More generally, our analysis elucidates and quantifies the trade-offs in natural network design for solar energy conversion.Comment: 4 pages and 4 figures. Accepted for publication in Physical Review Letters
    • …
    corecore