117 research outputs found

    Prostatic artery embolization (PAE) using polyethylene glycol microspheres: safety and efficacy in 81 patients

    Get PDF
    Purpose: To evaluate the safety and efficacy of prostatic artery embolization (PAE) using polyethylene glycol microspheres (PEGM) in patients with lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). Materials and methods: This multicentric prospective study enrolled 81 patients who underwent PAE with 400 ± 75 µm PEGM (HydroPearl®, Terumo, Japan). Results from baseline and 1-, 3-, 6-, and 12-month follow-ups were assessed for subjective outcomes including International Prostate Symptoms Score (IPSS), Quality of life (QoL), and International Index of Erectile Function, and objective outcomes such as peak urinary flow (Qmax) and post-void residual volume (PVR). The visual analogue scale, satisfaction questionnaire, prostatic volume, and prostatic specific antigen levels were also evaluated. Complications were documented using the modified Clavien-Dindo classification. Results: Technical success was obtained in all patients. Clinical success was achieved in 78.5% of patients. Before PAE, 54.3% of patients had an indwelling catheter which was removed in 75% of them after procedure. A statistically significant decrease was observed in IPSS and QoL from baseline to 12 months (20.14 vs 5.89; 4.8 vs 0.63, P <.01), respectively. Objective outcomes also showed a statistically significant improvement in Qmax (+ 114.9%; P <.01), achieving a maximum urinary flow of 14.2 mL/sec, and PVR (decrease 58%; P <.05) at 12 months. Minor complications (Clavien-Dindo grades I-II) occurred in 13.6% of patients, without major complications observed. Conclusion: PAE with PEGM is safe and effective treatment in patients with symptomatic BPH, with a significant improvement in both subjective and objective outcome

    Bone marrow mesenchymal stem cells do not enhance intra-synovial tendon healing despite engraftment and homing to niches within the synovium

    Get PDF
    Intra-synovial tendon injuries display poor healing, which often results in reduced functionality and pain. A lack of effective therapeutic options has led to experimental approaches to augment natural tendon repair with autologous mesenchymal stem cells (MSCs) although the effects of the intra-synovial environment on the distribution, engraftment and functionality of implanted MSCs is not known. This study utilised a novel sheep model which, although in an anatomically different location, more accurately mimics the mechanical and synovial environment of the human rotator cuff, to determine the effects of intra-synovial implantation of MSCs

    Polybrene Inhibits Human Mesenchymal Stem Cell Proliferation during Lentiviral Transduction

    Get PDF
    Human mesenchymal stem cells (hMSCs) can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1–8 µg/mL) negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 µg/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr). Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical

    Effect of hyperbaric oxygen on mesenchymal stem cells for lumbar fusion in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperbaric oxygen (HBO) therapy has been proved in improving bone healing, but its effects on mesenchymal stem cells (MSCs) <it>in vivo </it>is not clear. The aims of this study are to clarify whether the HBO therapy has the same enhancing effect on MSCs with regard to bone formation and maturation and to ascertain whether the transplanted MSCs survive in the grafted area and contribute to new bone formation.</p> <p>Methods</p> <p>Twenty-three adult rabbits underwent posterolateral fusion at L4-L5 level. The animals were divided into three groups according to the material implanted and subsequent treatment: (1) Alginate carrier (n = 6); (2) Alginate-MSCs composite (n = 11); and (3) Alginate-MSCs composite with HBO therapy (n = 6). After 12 weeks, spine fusion was examined using radiographic examination, manual testing, and histological examination. Using a PKH fluorescence labeling system, whether the transplanted MSCs survived and contributed to new bone formation in the grafted area after HBO therapy was also examined.</p> <p>Results</p> <p>The bilateral fusion areas in each animal were evaluated independently. By radiographic examination and manual palpation, union for the Alginate, Alginate-MSCs, and Alginate-MSCs-HBO groups was 0 of 12, 10 of 22, and 6 of 12 respectively. The difference between the Alginate-MSCs and Alginate-MSCs-HBO groups was not significant (P = 0.7997). The fluorescence microscopy histological analysis indicated that the transplanted PKH67-labeled MSCs survived and partly contributed to new bone formation in the grafted area.</p> <p>Conclusions</p> <p>This study demonstrated that the preconditioned MSCs could survive and yield bone formation in the grafted area. HBO therapy did not enhance the osteogenic ability of MSCs and improve the success of spine fusion in the rabbit model. Although there was no significant effect of HBO therapy on MSCs for spine fusion, the study encourages us to research a more basic approach for determining the optimal oxygen tension and pressure that are required to maintain and enhance the osteogenic ability of preconditioned MSCs. Further controlled <it>in vivo </it>and <it>in vitro </it>studies are required for achieving a better understanding of the effect of HBO treatment on MSCs.</p

    A new technique for seeding chondrocytes onto solvent-preserved human meniscus using the chemokinetic effect of recombinant human bone morphogenetic protein-2

    Get PDF
    Many investigators are currently studying the use of decellularized tissue allografts from human cadavers as scaffolds onto which patients’ cells could be seeded, or as carriers for genetically engineered cells to aid cell transplantation. However, it is difficult to seed cells onto very dense regular connective tissue which has few interstitial spaces. Here, we discuss the development of a chemotactic cell seeding technique using solvent-preserved human meniscus. A chemokinetic response to recombinant human bone morphogenetic protein-2 (rhBMP-2) was observed in a monolayer culture of primary chondrocytes derived from femoral epiphyseal cartilage of 2-day-old rats. The rhBMP-2 significantly increased their migration upto 10 ng/ml in a dose-dependent manner. When tested with solvent-preserved human meniscus as a scaffold, which has few interstitial spaces, rhBMP-2 was able to induce chondrocytes to migrate into the meniscus. After a 3-week incubation, newly-formed cartilaginous extracellular matrix was synthesized by migrated chondrocytes throughout the meniscus, down to a depth of 3 mm. These findings demonstrate that rhBMP-2 may be a natural chemokinetic factor in vivo, which induces migration of proliferative chondrocytes into the narrow interfibrous spaces. Our results suggest a potential application of rhBMP-2 for the designed distribution of chondrocytes into a scaffold to be used for tissue engineering

    Fibroblast Growth Factor-2 Primes Human Mesenchymal Stem Cells for Enhanced Chondrogenesis

    Get PDF
    Human mesenchymal stem cells (hMSCs) are multipotent cells capable of differentiating into a variety of mature cell types, including osteoblasts, adipocytes and chondrocytes. It has previously been shown that, when expanded in medium supplemented with fibroblast growth factor-2 (FGF-2), hMSCs show enhanced chondrogenesis (CG). Previous work concluded that the enhancement of CG could be attributed to the selection of a cell subpopulation with inherent chondrogenic potential. In this study, we show that FGF-2 pretreatment actually primed hMSCs to undergo enhanced CG by increasing basal Sox9 protein levels. Our results show that Sox9 protein levels were elevated within 30 minutes of exposure to FGF-2 and progressively increased with longer exposures. Further, we show using flow cytometry that FGF-2 increased Sox9 protein levels per cell in proliferating and non-proliferating hMSCs, strongly suggesting that FGF-2 primes hMSCs for subsequent CG by regulating Sox9. Indeed, when hMSCs were exposed to FGF-2 for 2 hours and subsequently differentiated into the chondrogenic lineage using pellet culture, phosphorylated-Sox9 (pSox9) protein levels became elevated and ultimately resulted in an enhancement of CG. However, small interfering RNA (siRNA)-mediated knockdown of Sox9 during hMSC expansion was unable to negate the prochondrogenic effects of FGF-2, suggesting that the FGF-2-mediated enhancement of hMSC CG is only partly regulated through Sox9. Our findings provide new insights into the mechanism by which FGF-2 regulates predifferentiation hMSCs to undergo enhanced CG

    Effect of Different Factors on Proliferation of Antler Cells, Cultured In Vitro

    Get PDF
    Antlers as a potential model for bone growth and development have become an object of rising interest. To elucidate processes explaining how antler growth is regulated, in vitro cultures have been established. However, until now, there has been no standard method to cultivate antler cells and in vitro results are often opposite to those reported in vivo. In addition, many factors which are often not taken into account under in vitro conditions may play an important role in the development of antler cells. In this study we investigated the effects of the antler growth stage, the male individuality, passaged versus primary cultures and the effect of foetal calf serum concentrations on proliferative potential of mixed antler cell cultures in vitro, derived from regenerating antlers of red deer males (Cervus elaphus). The proliferation potential of antler cells was measured by incorporation of 3H thymidine. Our results demonstrate that there is no significant effect of the antler growth stage, whereas male individuality and all other examined factors significantly affected antler cell proliferation. Furthermore, our results suggest that primary cultures may better represent in vivo conditions and processes occurring in regenerating antlers. In conclusion, before all main factors affecting antler cell proliferation in vitro will be satisfactorily investigated, results of in vitro studies focused on hormonal regulation of antler growth should be taken with extreme caution

    Construction of large-volume tissue mimics with 3D functional vascular networks

    Get PDF
    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture.ope

    Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and osteogenic differentiation potential

    Get PDF
    Recently adipose tissue has become a research topic also for the searching for an alternative stem cells source to use in cell based therapies such as tissue engineer. In fact Adipose Stem Cells (ASCs) exhibit an important differentiation potential for several cell lineages such as chondrogenic, osteogenic, myogenic, adipogenic and endothelial cells. ASCs populations isolated using standard methodologies (i.e., based on their adherence ability) are very heterogeneous but very few studies have analysed this aspect. Consequently, several questions are still pending, as for example, on what regard the existence/ or not of distinct ASCs subpopulations. The present study is originally aimed at isolating selected ASCs subpopulations, and to analyse their behaviour towards the heterogeneous population regarding the expression of stem cell markers and also regarding their osteogenic and chondrogenic differentiation potential. Human Adipose derived Stem Cells (hASCs) subpopulations were isolated using immunomagnetic beads coated with several different antibodies (CD29, CD44, CD49d, CD73, CD90, CD 105, Stro-1 and p75) and were characterized by Real Time RT-PCR in order to assess the expression of mesenchymal stem cells markers (CD44, CD73, Stro-1, CD105 and CD90) as well as known markers of the chondrogenic (Sox 9, Collagen II) and osteogenic lineage (Osteopontin, Osteocalcin). The obtained results underline the complexity of the ASCs population demonstrating that it is composed of several subpopulations, which express different levels of ASCs markers and exhibit distinctive differentiation potentials. Furthermore, the results obtained clearly evidence of the advantages of using selected populations in cell-based therapies, such as bone and cartilage regenerative medicine approaches.EU funded Marie Curie Actions Alea Jacta Est for a PhD fellowship. This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283)
    corecore