250 research outputs found
Pituitary tumor-transforming gene expression is a prognostic marker for tumor recurrence in squamous cell carcinoma of the head and neck
BACKGROUND: The proto-oncogene pituitary tumor-transforming gene (PTTG) has been shown to be abundantly overexpressed in a large variety of neoplasms likely promoting neo-vascularization and tumor invasiveness. In this study, we investigated a potential role for PTTG mRNA expression as a marker to evaluate the future clinical outcome of patients diagnosed with primary cancer of the head and neck. METHODS: Tumor samples derived from primary tumors of 89 patients suffering from a squamous cell carcinoma were analyzed for PTTG mRNA-expression and compared to corresponding unaffected tissue. Expression levels were correlated to standard clinico-pathological parameters based on a five year observation period. RESULTS: In almost all 89 tumor samples PTTG was found to be overexpressed (median fold increase: 2.1) when compared to the unaffected tissue specimens derived from the same patient. The nodal stage correlated with PTTG transcript levels with significant differences between pN0 (median expression: 1.32) and pN+ (median expression: 2.12; P = 0.016). In patients who developed a tumor recurrence we detected a significantly higher PTTG expression in primary tumors (median expression: 2.63) when compared to patients who did not develop a tumor recurrence (median expression: 1.29; P = 0.009). Since the median expression of PTTG in patients with tumor stage T1/2N0M0 that received surgery alone without tumor recurrence was 0.94 versus 3.82 in patients suffering from a tumor recurrence (P = 0.006), PTTG expression might provide a feasible mean of predicting tumor recurrence. CONCLUSION: Elevated PTTG transcript levels might be used as a prognostic biomarker for future clinical outcome (i.e. recurrence) in primary squamous cell carcinomas of the head and neck, especially in early stages of tumor development
Common soil history is more important than plant history for arbuscular mycorrhizal community assembly in an experimental grassland diversity gradient
The relationship between biodiversity and ecosystem functioning strengthens with ecosystem age. However, the interplay between the plant diversity - ecosystem functioning relationship and Glomeromycotinian arbuscular mycorrhizal fungi (AMF) community assembly has not yet been scrutinized in this context, despite AMF’s role in plant survival and niche exploration. We study the development of AMF communities by disentangling soil- and plant-driven effects from calendar year effects. Within a long-term grassland biodiversity experiment, the pre-existing plant communities of varying plant diversity were re-established as split plots with combinations of common plant and soil histories: split plots with neither common plant nor soil history, with only soil but no plant history, and with both common plant and soil history. We found that bulk soil AMF communities were primarily shaped by common soil history, and additional common plant history had little effect. Further, the steepness of AMF diversity and plant diversity relationship did not strengthen over time, but AMF community evenness increased with common history. Specialisation of AMF towards plant species was low throughout, giving no indication of AMF communities specialising or diversifying over time. The potential of bulk soil AMF as mediators of variation in plant and microbial biomass over time and hence as drivers of biodiversity and ecosystem relationships was low. Our results suggest that soil processes may be key for the build-up of plant community-specific mycorrhizal communities with likely feedback effects on ecosystem productivity, but the plant-available mycorrhizal pool in bulk soil itself does not explain the strengthening of biodiversity and ecosystem relationships over time
Preclinical PET and MR Evaluation of 89Zr- and 68Ga-Labeled Nanodiamonds in Mice over Different Time Scales
Nanodiamonds (NDs) have high potential as a drug carrier and in combination with nitrogen vacancies (NV centers) for highly sensitive MR-imaging after hyperpolarization. However, little remains known about their physiological properties in vivo. PET imaging allows further evaluation due to its quantitative properties and high sensitivity. Thus, we aimed to create a preclinical platform for PET and MR evaluation of surface-modified NDs by radiolabeling with both short- and long-lived radiotracers. Serum albumin coated NDs, functionalized with PEG groups and the chelator deferoxamine, were labeled either with zirconium-89 or gallium-68. Their biodistribution was assessed in two different mouse strains. PET scans were performed at various time points up to 7 d after i.v. injection. Anatomical correlation was provided by additional MRI in a subset of animals. PET results were validated by ex vivo quantification of the excised organs using a gamma counter. Radiolabeled NDs accumulated rapidly in the liver and spleen with a slight increase over time, while rapid washout from the blood pool was observed. Significant differences between the investigated radionuclides were only observed for the spleen (1 h). In summary, we successfully created a preclinical PET and MR imaging platform for the evaluation of the biodistribution of NDs over different time scales
Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: A randomized, double-blind, sham-controlled ACT2 study
Background Clinical observations and results from recent studies support the use of non-invasive vagus nerve stimulation (nVNS) for treating cluster headache (CH) attacks. This study compared nVNS with a sham device for acute treatment in patients with episodic or chronic CH (eCH, cCH). Methods After completing a 1-week run-in period, subjects were randomly assigned (1:1) to receive nVNS or sham therapy during a 2-week double-blind period. The primary efficacy endpoint was the proportion of all treated attacks that achieved pain-free status within 15 minutes after treatment initiation, without rescue treatment. Results The Full Analysis Set comprised 48 nVNS-treated (14 eCH, 34 cCH) and 44 sham-treated (13 eCH, 31 cCH) subjects. For the primary endpoint, nVNS (14%) and sham (12%) treatments were not significantly different for the total cohort. In the eCH subgroup, nVNS (48%) was superior to sham (6%;p<0.01). No significant differences between nVNS (5%) and sham (13%) were seen in the cCH subgroup. Conclusions Combing both eCH and cCH patients, nVNS was no different to sham. For the treatment of CH attacks, nVNS was superior to sham therapy in eCH but not in cCH. These results confirm and extend previous findings regarding the efficacy, safety, and tolerability of nVNS for the acute treatment of eCH
Neoadjuvant bevacizumab and anthracycline-taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44)â€
Background We evaluated the pathological complete response (pCR) rate after neoadjuvant epirubicin, (E) cyclophosphamide (C) and docetaxel containing chemotherapy with and without the addition of bevacizumab in patients with triple-negative breast cancer (TNBC). Patients and methods Patients with untreated cT1c-4d TNBC represented a stratified subset of the 1948 participants of the HER2-negative part of the GeparQuinto trial. Patients were randomized to receive four cycles EC (90/600 mg/m2; q3w) followed by four cycles docetaxel (100 mg/m2; q3w) each with or without bevacizumab (15 mg/kg; q3w) added to chemotherapy. Results TNBC patients were randomized to chemotherapy without (n = 340) or with bevacizumab (n = 323). pCR (ypT0 ypN0, primary end point) rates were 27.9% without and 39.3% with bevacizumab (P = 0.003). According to other pCR definitions, the addition of bevacizumab increased the pCR rate from 30.9% to 41.8% (ypT0 ypN0/+; P = 0.004), 36.2% to 46.4% (ypT0/is ypN0/+; P = 0.009) and 32.9% to 43.3% (ypT0/is ypN0; P = 0.007). Bevacizumab treatment [OR 1.73, 95% confidence interval (CI) 1.23-2.42; P = 0.002], lower tumor stage (OR 2.38, 95% CI 1.24-4.54; P = 0.009) and grade 3 tumors (OR 1.68, 95% CI 1.14-2.48; P = 0.009) were confirmed as independent predictors of higher pCR in multivariate logistic regression analysis. Conclusions The addition of bevacizumab to chemotherapy in TNBC significantly increases pCR rate
HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer
Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial.
Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro.
Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors.
Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group
Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO)
BACKGROUND: Fundus autofluorescence (AF) imaging using confocal scanning laser ophthalmoscopy (cSLO) provides an accurate delineation of areas of geographic atrophy (GA). Automated computer-assisted methods for detecting and removing interfering vessels are needed to support the GA quantification process in longitudinal studies and in reading centres. METHODS: A test tool was implemented that uses region-growing techniques to segment GA areas. An algorithm for illuminating shadows can be used to process low-quality images. Agreement between observers and between three different methods was evaluated by two independent readers in a pilot study. Agreement and objectivity were assessed using the Bland-Altman approach. RESULTS: The new method (C) identifies vascular structures that interfere with the delineation of GA. Results are comparable to those of two commonly used procedures (A, B), with a mean difference between C and A of -0.67 mm(2 )(95% CI [-0.99, -0.36]), between B and A of -0.81 mm(2), (95% CI [-1.08, -0.53]), and between C and B of 0.15 mm(2 )(95% CI [-0.12, 0.41]). Objectivity of a method is quantified by the mean difference between observers: A 0.30 mm(2 )(95% CI [0.02, 0.57]), B -0.11 mm(2 )(95% CI [-0.28, 0.10]), and C 0.12 mm(2 )(95% CI [0.02, 0.22]). CONCLUSION: The novel procedure is comparable with regard to objectivity and inter-reader agreement to established methods of quantifying GA. It considerably speeds up the lengthy measurement process in AF with well defined GA zones
- …