12,282 research outputs found
Parity-dependent State Engineering and Tomography in the ultrastrong coupling regime
Reaching the strong coupling regime of light-matter interaction has led to an
impressive development in fundamental quantum physics and applications to
quantum information processing. Latests advances in different quantum
technologies, like superconducting circuits or semiconductor quantum wells,
show that the ultrastrong coupling regime (USC) can also be achieved, where
novel physical phenomena and potential computational benefits have been
predicted. Nevertheless, the lack of effective decoupling mechanism in this
regime has so far hindered control and measurement processes. Here, we propose
a method based on parity symmetry conservation that allows for the generation
and reconstruction of arbitrary states in the ultrastrong coupling regime of
light-matter interactions. Our protocol requires minimal external resources by
making use of the coupling between the USC system and an ancillary two-level
quantum system.Comment: Improved version. 9 pages, 5 figure
Heralded Entanglement of Arbitrary Degree in Remote Qubits
Incoherent scattering of photons off two remote atoms with a Lambda-level
structure is used as a basic Young-type interferometer to herald long-lived
entanglement of an arbitrary degree. The degree of entanglement, as measured by
the concurrence, is found to be tunable by two easily accessible experimental
parameters. Fixing one of them to certain values unveils an analog to the
Malus' law. An estimate of the variation in the degree of entanglement due to
uncertainties in an experimental realization is given.Comment: published version, 4 pages and 2 figure
Selective Control of the Symmetric Dicke Subspace in Trapped Ions
We propose a method of manipulating selectively the symmetric Dicke subspace
in the internal degrees of freedom of N trapped ions. We show that the direct
access to ionic-motional subspaces, based on a suitable tuning of
motion-dependent AC Stark shifts, induces a two-level dynamics involving
previously selected ionic Dicke states. In this manner, it is possible to
produce, sequentially and unitarily, ionic Dicke states with increasing
excitation number. Moreover, we propose a probabilistic technique to produce
directly any ionic Dicke state assuming suitable initial conditions.Comment: 5 pages and 1 figure. New version with minor changes and added
references. Accepted in Physical Review
Operational multipartite entanglement classes for symmetric photonic qubit states
We present experimental schemes that allow to study the entanglement classes
of all symmetric states in multiqubit photonic systems. In addition to
comparing the presented schemes in efficiency, we will highlight the relation
between the entanglement properties of symmetric Dicke states and a recently
proposed entanglement scheme for atoms. In analogy to the latter, we obtain a
one-to-one correspondence between well-defined sets of experimental parameters
and multiqubit entanglement classes inside the symmetric subspace of the
photonic system.Comment: 5 pages, 1 figur
Finite sampling effects on generalized fluctuation-dissipation relations for steady states
We study the effects of the finite number of experimental data on the
computation of a generalized fluctuation-dissipation relation around a
nonequilibrium steady state of a Brownian particle in a toroidal optical trap.
We show that the finite sampling has two different effects, which can give rise
to a poor estimate of the linear response function. The first concerns the
accessibility of the generalized fluctuation-dissipation relation due to the
finite number of actual perturbations imposed to the control parameter. The
second concerns the propagation of the error made at the initial sampling of
the external perturbation of the system. This can be highly enhanced by
introducing an estimator which corrects the error of the initial sampled
condition. When these two effects are taken into account in the data analysis,
the generalized fluctuation-dissipation relation is verified experimentally
Operational Entanglement Families of Symmetric Mixed N-Qubit States
We introduce an operational entanglement classification of symmetric mixed
states for an arbitrary number of qubits based on stochastic local operations
assisted with classical communication (SLOCC operations). We define families of
SLOCC entanglement classes successively embedded into each other, we prove that
they are of non-zero measure, and we construct witness operators to distinguish
them. Moreover, we discuss how arbitrary symmetric mixed states can be realized
in the lab via a one-to-one correspondence between well-defined sets of
controllable parameters and the corresponding entanglement families.Comment: 6 pages, 2 figures, published version, Phys. Rev. A, in pres
Measure of phonon-number moments and motional quadratures through infinitesimal-time probing of trapped ions
A method for gaining information about the phonon-number moments and the
generalized nonlinear and linear quadratures in the motion of trapped ions (in
particular, position and momentum) is proposed, valid inside and outside the
Lamb-Dicke regime. It is based on the measurement of first time derivatives of
electronic populations, evaluated at the motion-probe interaction time t=0. In
contrast to other state-reconstruction proposals, based on measuring Rabi
oscillations or dispersive interactions, the present scheme can be performed
resonantly at infinitesimal short motion-probe interaction times, remaining
thus insensitive to decoherence processes.Comment: 10 pages. Accepted in JPhys
Operational determination of multi-qubit entanglement classes via tuning of local operations
We present a physical setup with which it is possible to produce arbitrary
symmetric long-lived multiqubit entangled states in the internal ground levels
of photon emitters, including the paradigmatic GHZ and W states. In the case of
three emitters, where each tripartite entangled state belongs to one of two
well-defined entanglement classes, we prove a one-to-one correspondence between
well-defined sets of experimental parameters, i.e., locally tunable polarizer
orientations, and multiqubit entanglement classes inside the symmetric
subspace.Comment: Improved version. Accepted in Physical Review Letter
- …
