2,394 research outputs found
Reconstruction of solar activity for the last millennium using Be data
In a recent paper (Usoskin et al., 2002a), we have reconstructed the
concentration of the cosmogenic Be isotope in ice cores from the
measured sunspot numbers by using physical models for Be production in
the Earth's atmosphere, cosmic ray transport in the heliosphere, and evolution
of the Sun's open magnetic flux. Here we take the opposite route: starting from
the Be concentration measured in ice cores from Antarctica and
Greenland, we invert the models in order to reconstruct the 11-year averaged
sunspot numbers since 850 AD. The inversion method is validated by comparing
the reconstructed sunspot numbers with the directly observed sunspot record
since 1610. The reconstructed sunspot record exhibits a prominent period of
about 600 years, in agreement with earlier observations based on cosmogenic
isotopes. Also, there is evidence for the century scale Gleissberg cycle and a
number of shorter quasi-periodicities whose periods seem to fluctuate in the
millennium time scale. This invalidates the earlier extrapolation of
multi-harmonic representation of sunspot activity over extended time intervals.Comment: Submitted to A&
Dislocation core properties of \beta-tin: A first-principles study
Dislocation core properties of tin (\beta-Sn) were investigated using the
semi-discrete variational Peierls-Nabarro model (SVPN). The SVPN model, which
connects the continuum elasticity treatment of the long-range strain field
around a dislocation with an approximate treatment of the dislocation core, was
employed to calculate various core properties, including the core energetics,
widths, and Peierls stresses for different dislocation structures. The role of
core energetics and properties on dislocation character and subsequent slip
behavior in \beta-Sn was investigated. For instance, this work shows that a
widely spread dislocation core on the {110} plane as compared to dislocations
on the {100} and {101} planes. Physically, the narrowing or widening of the
core will significantly affect the mobility of dislocations as the Peierls
stress is exponentially related to the dislocation core width in \beta-Sn. In
general, the Peierls stress for the screw dislocation was found to be orders of
magnitude higher than the edge dislocation, i.e., the more the edge component
of a mixed dislocation, the greater the dislocation mobility (lower the Peierls
stress). The largest Peierls stress observed was 365 MPa for the dislocation on
the {101} plane. Furthermore, from the density plot, we see a double peak for
the 0deg (screw) and 30deg dislocations which suggests the dissociation of
dislocations along these planes. Thus, for the {101} slip system, we
observed dislocation dissociation into three partials with metastable states.
Overall, this work provides qualitative insights that aid in understanding the
plastic deformation in \beta-Sn
Grand minima and maxima of solar activity: New observational constraints
Using a reconstruction of sunspot numbers stretching over multiple millennia,
we analyze the statistics of the occurrence of grand minima and maxima and set
new observational constraints on long-term solar and stellar dynamo models.
We present an updated reconstruction of sunspot number over multiple
millennia, from C data by means of a physics-based model, using an
updated model of the evolution of the solar open magnetic flux. A list of grand
minima and maxima of solar activity is presented for the Holocene (since 9500
BC) and the statistics of both the length of individual events as well as the
waiting time between them are analyzed.
The occurrence of grand minima/maxima is driven not by long-term cyclic
variability, but by a stochastic/chaotic process. The waiting time distribution
of the occurrence of grand minima/maxima deviates from an exponential
distribution, implying that these events tend to cluster together with long
event-free periods between the clusters. Two different types of grand minima
are observed: short (30--90 years) minima of Maunder type and long (110
years) minima of Sp\"orer type, implying that a deterministic behaviour of the
dynamo during a grand minimum defines its length. The duration of grand maxima
follows an exponential distribution, suggesting that the duration of a grand
maximum is determined by a random process.
These results set new observational constraints upon the long-term behaviour
of the solar dynamo.Comment: 10 Figure
Fan Loops Observed by IRIS, EIS and AIA
A comprehensive study of the physical parameters of active region fan loops
is presented using the observations recorded with the Interface Region Imaging
Spectrometer (IRIS), the EUV Imaging Spectrometer (EIS) on-board Hinode and the
Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager
(HMI) on-board the Solar Dynamics Observatory (SDO). The fan loops emerging
from non-flaring AR~11899 (near the disk-center) on 19th November, 2013 are
clearly discernible in AIA 171~{\AA} images and those obtained in \ion{Fe}{8}
and \ion{Si}{7} images using EIS. Our measurements of electron densities reveal
that the footpoints of these loops are approximately at constant pressure with
electron densities of 10.1 cm at
(\ion{O}{4}), and 8.9 cm at
(\ion{Si}{10}). The electron temperature diagnosed across the fan loops by
means of EM-Loci suggest that at the footpoints, there are two temperature
components at and 5.95, which are picked-up by IRIS lines
and EIS lines respectively. At higher heights, the loops are nearly isothermal
at , that remained constant along the loop. The measurement
of Doppler shift using IRIS lines suggests that the plasma at the footpoints of
these loops is predominantly redshifted by 2-3~km~s in \ion{C}{2},
10-15~km~s in \ion{Si}{4} and 15{--}20~km~s in \ion{O}{4},
reflecting the increase in the speed of downflows with increasing temperature
from to 5.15. These observations can be explained by low
frequency nanoflares or impulsive heating, and provide further important
constraints on the modeling of the dynamics of fan loops.Comment: Accepted for publication in The Astrophysical Journal; 8 Figures, 11
page
Evidence for polar jets as precursors of polar plume formation
Observations from the Hinode/XRT telescope and STEREO/SECCHI/EUVI are
utilized to study polar coronal jets and plumes. The study focuses on the
temporal evolution of both structures and their relationship. The data sample,
spanning April 7-8 2007, shows that over 90% of the 28 observed jet events are
associated with polar plumes. EUV images (STEREO/SECCHI) show plume haze rising
from the location of approximately 70% of the polar X-ray (Hinode/XRT) and EUV
jets, with the plume haze appearing minutes to hours after the jet was
observed. The remaining jets occurred in areas where plume material previously
existed causing a brightness enhancement of the latter after the jet event.
Short-lived, jet-like events and small transient bright points are seen (one at
a time) at different locations within the base of pre-existing long-lived
plumes. X-ray images also show instances (at least two events) of
collimated-thin jets rapidly evolving into significantly wider plume-like
structures that are followed by the delayed appearance of plume haze in the
EUV. These observations provide evidence that X-ray jets are precursors of
polar plumes, and in some cases cause brightenings of plumes. Possible
mechanisms to explain the observed jet and plume relationship are discussed.Comment: 10 pages, 4 figures, accepted as APJ Lette
Solar total and spectral irradiance reconstruction over the last 9000 years
Changes in solar irradiance and in its spectral distribution are among the
main natural drivers of the climate on Earth. However, irradiance measurements
are only available for less than four decades, while assessment of solar
influence on Earth requires much longer records. The aim of this work is to
provide the most up-to-date physics-based reconstruction of the solar total and
spectral irradiance (TSI/SSI) over the last nine millennia. The concentrations
of the cosmogenic isotopes 14C and 10Be in natural archives have been converted
to decadally averaged sunspot numbers through a chain of physics-based models.
TSI and SSI are reconstructed with an updated SATIRE model. Reconstructions are
carried out for each isotope record separately, as well as for their composite.
We present the first ever SSI reconstruction over the last 9000 years from the
individual 14C and 10Be records as well as from their newest composite. The
reconstruction employs physics-based models to describe the involved processes
at each step of the procedure. Irradiance reconstructions based on two
different cosmogenic isotope records, those of 14C and 10Be, agree well with
each other in their long-term trends despite their different geochemical paths
in the atmosphere of Earth. Over the last 9000 years, the reconstructed secular
variability in TSI is of the order of 0.11%, or 1.5 W/m2. After the Maunder
minimum, the reconstruction from the cosmogenic isotopes is consistent with
that from the direct sunspot number observation. Furthermore, over the
nineteenth century, the agreement of irradiance reconstructions using isotope
records with the reconstruction from the sunspot number by Chatzistergos et al.
(2017) is better than that with the reconstruction from the WDC-SILSO series
(Clette et al. 2014), with a lower chi-square-value
Spectroscopic Observations of Propagating Disturbances in a Polar Coronal Hole: Evidence of Slow Magneto-acoustic Waves
We focus on detecting and studying quasi-periodic propagating features that
have been interpreted both in terms of slow magneto-acoustic waves and of high
speed upflows. We analyze long duration spectroscopic observations of the
on-disk part of the south polar coronal hole taken on 1997 February 25 by the
SUMER spectrometer aboard SOHO. We calibrated the velocity with respect to the
off-limb region and obtain time--distance maps in intensity, Doppler velocity
and line width. We also perform a cross correlation analysis on different time
series curves at different latitudes. We study average spectral line profiles
at the roots of propagating disturbances and along the propagating ridges, and
perform a red-blue asymmetry analysis. We find the clear presence of
propagating disturbances in intensity and Doppler velocity with a projected
propagation speed of about km s and a periodicity of
14.5 min. To our knowledge, this is the first simultaneous detection
of propagating disturbances in intensity as well as in Doppler velocity in a
coronal hole. During the propagation, an intensity enhancement is associated
with a blue-shifted Doppler velocity. These disturbances are clearly seen in
intensity also at higher latitudes (i.e. closer to the limb), while
disturbances in Doppler velocity becomes faint there. The spectral line
profiles averaged along the propagating ridges are found to be symmetric, to be
well fitted by a single Gaussian, and have no noticeable red-blue asymmetry.
Based on our analysis, we interpret these disturbances in terms of propagating
slow magneto-acoustic waves.Comment: accepted for publication by A&
Access to health care in South Africa - the influence of race and class
Objectives. The first democratic government elected in South Africa in 1994 inherited huge inequities in health status and health provision across all section of the population. This study set out to assess the impact of the new government's commitment to address these inequities and implement policies to improve population health in general and address inequities in health care in particular. Design. A 1998 household survey assessed many aspects of health delivery, including their own perceived and actual access to health care among different segment of South Africa society. Results. Race was the main predictor of perceived changes in access to health care, with black, coloured and Indian respondents significatly more likely to feel that access had improved since 1994, compared with white respondents. Socio-economic status (SES) was the main predictor of actual access to health care, with low and middle SES classes significantly less likely to access care when ill. Conclusions. One-third of respondents perceived health care access to have improved between 1994 and 1998, and this response was partially determined along racial lines. About one-quarter reported an inability to access health care when they required it, and this response was partially determined along socio-economic lines. This set of contrasting responses suggests that at a political level perceptions are largely influenced by race, but at the operational level actual access is influenced by SES
Discovery of kilogauss magnetic fields in three DA white dwarfs
We have detected longitudinal magnetic fields between 2 and 4 kG in three (WD
0446790, WD 1105048, WD 2359434) out of a sample of 12 normal DA white
dwarfs by using optical spectropolarimetry done with the VLT Antu 8 m telescope
equipped with FORS1. With the exception of 40 Eri B (4 kG) these are the first
positive detections of magnetic fields in white dwarfs below 30 kG. Although
suspected, it was not clear whether a significant fraction of white dwarfs
contain magnetic fields at this level. These fields may be explained as fossil
relics from magnetic fields in the main-sequence progenitors considerably
enhanced by magnetic flux conservation during the shrinkage of the core. A
detection rate of 25 % (3/12) may indicate now for the first time that a
substantial fraction of white dwarfs have a weak magnetic field. This result,
if confirmed by future observations, would form a cornerstone for our
understanding on the evolution of stellar magnetic fields.
Keywords: stars: white dwarfs - stars: magnetic fields - stars: individual:
WD0446-790, WD1105-048, WD2359-434Comment: 15 pages, 7 figures, Astronomy and Astrophysics, in pres
- …
