4,001 research outputs found
The uncombed penumbra
The uncombed penumbral model explains the structure of the sunspot penumbra
in terms of thick magnetic fibrils embedded in a magnetic surrounding
atmosphere. This model has been successfully applied to explain the
polarization signals emerging from the sunspot penumbra. Thick penumbral
fibrils face some physical problems, however. In this contribution we will
offer possible solutions to these shortcomings.Comment: 6 pages, 2 figures. to appear in the proceedings of the Solar
Polarization Workshop I
Stokes diagnostics of simulated solar magneto-convection
We present results of synthetic spectro-polarimetric diagnostics of radiative
MHD simulations of solar surface convection with magnetic fields. Stokes
profiles of Zeeman-sensitive lines of neutral iron in the visible and infrared
spectral ranges emerging from the simulated atmosphere have been calculated in
order to study their relation to the relevant physical quantities and compare
with observational results. We have analyzed the dependence of the Stokes-I
line strength and width as well as of the Stokes-V signal and asymmetries on
the magnetic field strength. Furthermore, we have evaluated the correspondence
between the actual velocities in the simulation with values determined from the
Stokes-I (Doppler shift of the centre of gravity) and Stokes-V profiles
(zero-crossing shift). We confirm that the line weakening in strong magnetic
fields results from a higher temperature (at equal optical depth) in the
magnetic flux concentrations. We also confirm that considerable Stokes-V
asymmetries originate in the peripheral parts of strong magnetic flux
concentrations, where the line of sight cuts through the magnetopause of the
expanding flux concentration into the surrounding convective donwflow.Comment: Astronomy & Astrophysics, in pres
The chromosphere above sunspots at millimeter wavelengths
Aims: The aim of this paper is to demonstrate that millimeter wave data can
be used to distinguish between various atmospheric models of sunspots, whose
temperature structure in the upper photosphere and chromosphere has been the
source of some controversy. Methods: We use observations of the temperature
contrast (relative to the quiet Sun) above a sunspot umbra at 3.5 mm obtained
with the Berkeley-Illinois-Maryland Array (BIMA), complemented by submm
observations from Lindsey & Kopp (1995) and 2 cm observations with the Very
Large Array. These are compared with the umbral contrast calculated from
various atmospheric models of sunspots. Results: Current mm and submm
observational data suggest that the brightness observed at these wavelengths is
low compared to the most widely used sunspot models. These data impose strong
constraints on the temperature and density stratifications of the sunspot
umbral atmosphere, in particular on the location and depth of the temperature
minimum and the location of the transition region. Conclusions: A successful
model that is in agreement with millimeter umbral brightness should have an
extended and deep temperature minimum (below 3000 K). Better spatial resolution
as well as better wavelength coverage are needed for a more complete
determination of the chromospheric temperature stratification above sunspot
umbrae.Comment: 9 pages, 11 figures.
http://www.aanda.org/articles/aa/abs/2014/01/aa21321-13/aa21321-13.htm
Measuring the Wilson depression of sunspots using the divergence-free condition of the magnetic field vector
Context: The Wilson depression is the difference in geometric height of unit
continuum optical depth between the sunspot umbra and the quiet Sun. Measuring
the Wilson depression is important for understanding the geometry of sunspots.
Current methods suffer from systematic effects or need to make assumptions on
the geometry of the magnetic field. This leads to large systematic
uncertainties of the derived Wilson depressions.
Aims: We aim at developing a robust method for deriving the Wilson depression
that only requires the information about the magnetic field that is accessible
from spectropolarimetry, and that does not rely on assumptions on the geometry
of sunspots or on their magnetic field.
Methods: Our method is based on minimizing the divergence of the magnetic
field vector derived from spectropolarimetric observations. We focus on large
spatial scales only in order to reduce the number of free parameters.
Results: We test the performance of our method using synthetic Hinode data
derived from two sunspot simulations. We find that the maximum and the umbral
averaged Wilson depression for both spots determined with our method typically
lies within 100 km of the true value obtained from the simulations. In
addition, we apply the method to Hinode observations of a sunspot. The derived
Wilson depression (about 600 km) is consistent with results typically obtained
from the Wilson effect. We also find that the Wilson depression obtained from
using horizontal force balance gives 110 - 180 km smaller Wilson depressions
than both, what we find and what we deduce directly from the simulations. This
suggests that the magnetic pressure and the magnetic curvature force contribute
to the Wilson depression by a similar amount.Comment: 12 pages, 8 figures. Accepted for publication in Astronomy &
Astrophysic
Gravity-induced birefringence within the framework of Poincare gauge theory
Gauge theories of gravity provide an elegant and promising extension of
general relativity. In this paper we show that the Poincar\'e gauge theory
exhibits gravity-induced birefringence under the assumption of a specific gauge
invariant nonminimal coupling between torsion and Maxwell's field. Furthermore
we give for the first time an explicit expression for the induced phaseshift
between two orthogonal polarization modes within the Poincar\'e framework.
Since such a phaseshift can lead to a depolarization of light emitted from an
extended source this effect is, in principle, observable. We use white dwarf
polarimetric data to constrain the essential coupling constant responsible for
this effect.Comment: 12 pages, accepted for publication by Physical Review
Probing quiet Sun magnetism using MURaM simulations and Hinode/SP results: support for a local dynamo
We obtain information about the magnetic flux present in the quiet Sun by
comparing radiative MHD simulations with Hinode/SP observations, with
particular emphasis on the role of surface dynamo action. Simulation runs with
different magnetic Reynolds numbers (Rm) are used together with observations at
different heliocentric angles with different levels of noise. The results show
that simulations with an imposed mixed-polarity field and Rm below the
threshold for dynamo action reproduce the observed vertical flux density, but
do not display a sufficiently high horizontal flux density. Surface dynamo
simulations at the highest Rm feasible at the moment yield a ratio of the
horizontal and vertical flux density consistent with observational results, but
the overall amplitudes are too low. Based on the properties of the local dynamo
simulations, a tentative scaling of the magnetic field strength by a factor 2 -
3 reproduces the signal observed in the internetwork regions. We find an
agreement with observations at different heliocentric angles. The mean field
strength in internetwork, implied by our analysis, is roughly 170 G at the
optical depth unity. Our study shows that surface dynamo could be responsible
for most of the magnetic flux in the quiet Sun outside the network given that
the extrapolation to higher Rm is valid.Comment: accepted in A&
Dislocation core properties of \beta-tin: A first-principles study
Dislocation core properties of tin (\beta-Sn) were investigated using the
semi-discrete variational Peierls-Nabarro model (SVPN). The SVPN model, which
connects the continuum elasticity treatment of the long-range strain field
around a dislocation with an approximate treatment of the dislocation core, was
employed to calculate various core properties, including the core energetics,
widths, and Peierls stresses for different dislocation structures. The role of
core energetics and properties on dislocation character and subsequent slip
behavior in \beta-Sn was investigated. For instance, this work shows that a
widely spread dislocation core on the {110} plane as compared to dislocations
on the {100} and {101} planes. Physically, the narrowing or widening of the
core will significantly affect the mobility of dislocations as the Peierls
stress is exponentially related to the dislocation core width in \beta-Sn. In
general, the Peierls stress for the screw dislocation was found to be orders of
magnitude higher than the edge dislocation, i.e., the more the edge component
of a mixed dislocation, the greater the dislocation mobility (lower the Peierls
stress). The largest Peierls stress observed was 365 MPa for the dislocation on
the {101} plane. Furthermore, from the density plot, we see a double peak for
the 0deg (screw) and 30deg dislocations which suggests the dissociation of
dislocations along these planes. Thus, for the {101} slip system, we
observed dislocation dissociation into three partials with metastable states.
Overall, this work provides qualitative insights that aid in understanding the
plastic deformation in \beta-Sn
- …
