19 research outputs found

    Absence of MALT1 traslocation in primary cutaneous marginal zone B-cell lymphoma

    Get PDF
    The implication of MALT1 gene in the pathogenesis of primary cutaneous marginal zone B-cell lymphomas (PCMZL) has been a matter of controversy. We examined the presence of MALT1 translocations in a series of 23 PCMZL. FISH assay with a MALT1 dual color break apart translocation probe revealed the absence of MALT1 translocations in all cases

    Comparative Analysis of TCR-gamma Gene Rearrangements by Genescan and Polyacrylamide Gel-electrophoresis in Cutaneous T-cell Lymphoma

    Get PDF
    Demonstrating T-cell clonality has become an important approach supporting a diagnosis of malignant T-cell neoplasms. A comparative study between Genescan analysis, polyacrylamide gel and agarose gel electrophoresis in visualizing X-cell receptor gamma gene rearrangement was performed on 25 biopsy specimens from 18 patients with different forms of cutaneous T-cell lymphomas. Clonality was detected in 17 biopsy specimens when PCR products were evaluated by Genescan analysis. Seventeen showed discrete bands when visualized in polyacrylamide gel and 14 cases were clonal when visualized with agarose gel. In five cases, a clonal population was seen in the gels, but not with Genescan. On sequencing the PCR products we demonstrated nonclonality of these five samples. Our results confirm that PCR-Genescan is a useful, reliable and specific screening method for detecting dominant clones in patients with T-cell lymphoma

    Lymphomatoid papulosis associated with mycosis fungoides. A clinicopathological and molecular study of 12 cases

    Get PDF
    The association of mycosis fungoides and a primary cutaneous CD30+ lymphoproliferative disorder has been reported and probably represents different clinical aspects of a unique T-cell monoclonal expansion. In this study, 12 patients (6 men and 6 women) presented with lymphomatoid papulosis and mycosis fungoides. A TCRgamma gene rearrangement study was performed by an automated high-resolution PCR fragment analysis method on skin biopsy specimens taken from the different clinical lesions in each patient. An indolent clinical course was observed in the majority of patients. T-cell clonality was identified in 7 of 12 lymphomatoid papulosis lesions (58%) and in 6 skin biopsies of plaque stage mycosis fungoides (50%). In each individual case, where T-cell clonality was detected, both mycosis fungoides and lymphomatoid papulosis specimens exhibited an identical peak pattern by automated high-resolution PCR fragment analysis, confirming a common clonal origin. Only one case showed a clonal TCRgamma rearrangement from the lymphomatoid papulosis lesion, which could not be demonstrated in the mycosis fungoides specimen. The demonstration of an identical clone seems to confirm that both disorders are different clinical manifestations of a unique T-cell monoclonal proliferation. Our results also seem to confirm that the association of mycosis fungoides with a primary cutaneous CD30+ lymphoproliferative disorder usually carries a favourable prognosis

    Targeted deep sequencing improves outcome stratification in chronic myelomonocytic leukemia with low risk cytogenetic features

    Get PDF
    Clonal cytogenetic abnormalities are found in 20-30% of patients with chronic myelomonocytic leukemia (CMML), while gene mutations are present in >90% of cases. Patients with low risk cytogenetic features account for 80% of CMML cases and often fall into the low risk categories of CMML prognostic scoring systems, but the outcome differs considerably among them. We performed targeted deep sequencing of 83 myeloid-related genes in 56 CMML patients with low risk cytogenetic features or uninformative conventional cytogenetics (CC) at diagnosis, with the aim to identify the genetic characteristics of patients with a more aggressive disease. Targeted sequencing was also performed in a subset of these patients at time of acute myeloid leukemia (AML) transformation. Overall, 98% of patients harbored at least one mutation. Mutations in cell signaling genes were acquired at time of AML progression. Mutations in ASXL1, EZH2 and NRAS correlated with higher risk features and shorter overall survival (OS) and progression free survival (PFS). Patients with SRSF2 mutations associated with poorer OS, while absence of TET2 mutations (TET2wt) was predictive of shorter PFS. A decrease in OS and PFS was observed as the number of adverse risk gene mutations (ASXL1, EZH2, NRAS and SRSF2) increased. On multivariate analyses, CMML-specific scoring system (CPSS) and presence of adverse risk gene mutations remained significant for OS, while CPSS and TET2wt were predictive of PFS. These results confirm that mutation analysis can add prognostic value to patients with CMML and low risk cytogenetic features or uninformative CC

    Trisomy 8, A Cytogenetic Abnormality In Myelodysplastic Syndromes, Is Constitutional Or Not?

    Get PDF
    Isolated trisomy 8 is not considered presumptive evidence of myelodysplastic syndrome (MDS) in cases without minimal morphological criteria. One reason given is that trisomy 8 (+8) can be found as a constitutional mosaicism (cT8M). We tried to clarify the incidence of cT8M in myeloid neoplasms, specifically in MDS, and the diagnostic value of isolated +8 in MDS. Twenty-two MDS and 10 other myeloid neoplasms carrying +8 were studied. Trisomy 8 was determined in peripheral blood by conventional cytogenetics (CC) and on granulocytes, CD3+ lymphocytes and oral mucosa cells by fluorescence in situ hybridization (FISH). In peripheral blood CC, +8 was seen in 4/32 patients. By FISH, only one patient with chronic myelomonocytic leukemia showed +8 in all cell samples and was interpreted as a cT8M. In our series +8 was acquired in all MDS. Probably, once discarded cT8M by FISH from CD3+ lymphocytes and non-hematological cells, +8 should be considered with enough evidence to MDS

    FOXP1 molecular cytogenetics and protein expression analyses in primary cutaneous large B cell lymphoma, leg-type

    Get PDF
    FOXP1 protein is expressed in normal activated B cells and overexpressed in a subset of diffuse large B-cell lymphomas, including primary cutaneous large B-cell lymphomas (PCLBCL), leg type. High expression of FOXP1 has been associated to an unfavourable prognosis with independent survival significance. However, little is known regarding the mechanisms underlying the overexpression of FOXP1 in PCLBCL, leg type. Our aims were to analyze FOXP1 cytogenetic status and protein expression in a series of PCLBCL, leg type. Finally, we compared the observed results with those obtained in a group of patients with primary cutaneous follicle centre lymphoma (PCFCL). Fifteen patients with PCLBCL, leg type and nine patients with primary cutaneous follicle centre lymphoma (PCFCL) were included in the study. For each biopsy specimen, FOXP1 translocation and copy number changes were evaluated by fluorescence in situ hybridization (FISH) and protein expression by immunohistochemistry (IHC). Immunohistochemistry showed FOXP1 staining in 13 PCLBCL, leg type, whereas all PCFCL were negative. FISH analysis disclosed no translocations involving FOXP1 gene in any of the cases. However, FOXP1 gene gains (3 to 4 copies) were observed in 82% of samples of PCLBCL, leg type and in 37% of PCFCL. FOXP1 expression was independent from FOXP1 translocation. Our results confirm that overexpression of FOXP1 is present in a considerable proportion of PCLBCL, leg type and might indicate an unfavourable prognosis. Mechanisms not related to translocation seem to be responsible for this overexpression

    Oligonucleotide array-CGH identifies genomic subgroups and prognostic markers for tumor stage mycosis fungoides

    Get PDF
    Mycosis fungoide (MF) patients who develop tumors or extracutaneous involvement usually have a poor prognosis with no curative therapy available so far. In the present European Organization for Research and Treatment of Cancer (EORTC) multicenter study, the genomic profile of 41 skin biopsies from tumor stage MF (MFt) was analyzed using a high-resolution oligo-array comparative genomic hybridization platform. Seventy-six percent of cases showed genomic aberrations. The most common imbalances were gains of 7q33.3q35 followed by 17q21.1, 8q24.21, 9q34qter, and 10p14 and losses of 9p21.3 followed by 9q31.2, 17p13.1, 13q14.11, 6q21.3, 10p11.22, 16q23.2, and 16q24.3. Three specific chromosomal regions, 9p21.3, 8q24.21, and 10q26qter, were defined as prognostic markers showing a significant correlation with overall survival (OS) (P=0.042, 0.017, and 0.022, respectively). Moreover, we have established two MFt genomic subgroups distinguishing a stable group (0-5 DNA aberrations) and an unstable group (>5 DNA aberrations), showing that the genomic unstable group had a shorter OS (P=0.05). We therefore conclude that specific chromosomal abnormalities, such as gains of 8q24.21 (MYC) and losses of 9p21.3 (CDKN2A, CDKN2B, and MTAP) and 10q26qter (MGMT and EBF3) may have an important role in prognosis. In addition, we describe the MFt genomic instability profile, which, to our knowledge, has not been reported earlier

    Genetic characterization of Sezary's syndrome by conventional cytogenetics and cross-species color banding fluorescent in situ hybridization

    No full text
    Background and objectives: Sezary's syndrome is a peripheral T-cell neoplasm characterized by a pruritic exfoliative or infiltrated erythroderma, lymphadenopathies, and atypical T lymphocytes in the peripheral blood. Cytogenetic studies are scarce. This study was designed to increase cytogenetic information on this disorder. Design and methods: peripheral blood samples were collected from 21 patients with Sezary's syndrome (10 men, 11 women, mean age 64 years) and analyzed by conventional cytogenetics (72-hr cultures with phytohemagglutinin). For a better characterization of multiple chromosomal rearrangements, cross-species color banding (RxFISH) was used in four cases. Results: fifteen (71.4%) of the 21 cases showed cytogenetic aberrations, with the karyotype being complex in 14. Among the 15 patients with an abnormal karyotype, 8 presented a diploid/near-diploid karyotype and 7 a near-tetraploid karyotype. The chromosomes most frequently involved were 1, 6, 8, 9, 10, 11, and 17. The most common structural rearrangements affected 1q, 2q, 6q23-27, and 8q22. Monosomies of chromosomes 9 and 10 and trisomies of chromosome 18 were recurrently observed. A statistical trend between abnormal and complex karyotypes, the presence of monosomy 10, the number of Sezary cells, and a decreased overall survival was observed. RxFISH technology allowed the description of 27 previously undetected chromosomal abnormalities. Interpretation and conclusions: abnormal karyotypes, particularly complex karyotypes, were frequently detected in patients with Sezary's syndrome. Monosomy 10 was the most frequent recurrent cytogenetic marker (73% in abnormal cases). There was a high diversity of chromosomal breakpoints. RxFISH is a useful novel technology for redefining complex karyotypes
    corecore