907 research outputs found

    Thermodynamical aspects of running vacuum models

    Get PDF
    The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ(H)∝Hn+2\Lambda (H) \propto H^{n+2}, is discussed in detail. Specifically, by assuming that the ultra-relativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρr∝T4\rho_r \propto T^{4}, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we findthat the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts thesame correct value of the present day entropy, S0∌1087−88S_{0} \sim 10^{87-88} (in natural units), independently of the initial conditions. In addition, by assuming Gibbons-Hawking temperature as an initial condition, we find that the ratio between the late time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρΛ0/ρΛI∌10−123\rho_{\Lambda 0}/\rho_{\Lambda I} \sim10^{-123}. Such results are independent on the power nn and suggests that the observed Universe may evolve smoothly between two extreme, unstable, nonsingular de Sitter phases.Comment: 15 pages in free style, 2 figures, to appear in European Phys. Journal C.,(this work generalizes that of arXiv:1412.5196

    Conflict resolution in Western Sahara

    Get PDF
    This paper examines the democratisation agenda laid out by Western governments for the North African region vis-Ă -vis their Realpolitik conflict containment approach towards the Western Sahara conflict. Western policymakers conceive the United Nations Mission for the Referendum in Western Sahara as a safety net that contains tension in the region and enables geo-strategic and economic partnerships with Algeria and Morocco. This paper underlines that the international community could play a greater role in promoting the long-term stability of the North African region by pursuing innovative policies geared towards addressing the root causes of the Western Sahara conflict

    Relaxing a large cosmological constant in the astrophysical domain

    Full text link
    We study the problem of relaxing a large cosmological constant in the astrophysical domain through a dynamical mechanism based on a modified action of gravity previously considered by us at the cosmological level. We solve the model in the Schwarzschild-de Sitter metric for large and small astrophysical scales, and address its physical interpretation by separately studying the Jordan's frame and Einstein's frame formulations of it. In particular, we determine the extremely weak strength of fifth forces in our model and show that they are virtually unobservable. Finally, we estimate the influence that the relaxation mechanism may have on pulling apart the values of the two gravitational potentials Psi and Phi of the metric, as this implies a departure of the model from General Relativity and could eventually provide an observational test of the new framework at large astrophysical scales, e.g. through gravitational lensing.Comment: 14 pages, 3 figures, accepted in Mod. Phys. Lett. A, extended discussion, references adde

    Supersymmetric effects on heavy charged Higgs boson production in hadron colliders

    Get PDF
    The production of a heavy supersymmetric charged Higgs boson (M_{H^{\pm}}> 200 GeV) at the Tevatron and at the LHC is studied. We include the leading one-loop quantum effects within the MSSM in the relevant high \tan\beta region. Whereas the chances for the Tevatron are limited, and critically depend on the size of the unknown NLO QCD effects, at the LHC the discovery range is more comfortable and may extend the reach above M_{H^{\pm}}= 1 TeV

    Higgs triplet effects in purely leptonic processes

    Get PDF
    We consider the effect of complex Higgs triplets on purely leptonic processes and survey the experimental constraints on the mass and couplings of their single and double charge members. Present day experiments tolerate values of the Yukawa couplings of these scalars at the level of the standard electroweak gauge couplings. We show that the proposed measurement of the ratio R_{LCD}=\sigma (\nu_{\mu}e)/ [\sigma (\bb\nu_{\mu}e) + \sigma (\nu_e e )] would allow to explore a large region of the parameter space inaccessible to the usual ratio R=\sigma (\nu_{\mu}e)/\sigma (\bb\nu_{\mu}e).Comment: 14 pages, LaTeX, Three figures included using uufiles. A postscript version is available at ftp://ftp.ifae.es/preprint/ft/uabft378.p

    Why 1,2‑quinone derivatives are more stable than their 2,3‑analogues?

    Get PDF
    In this work, we have studied the relative stability of 1,2- and 2,3-quinones. While 1,2-quinones have a closed-shell singlet ground state, the ground state for the studied 2,3-isomers is open-shell singlet, except for 2,3-naphthaquinone that has a closed-shell singlet ground state. In all cases, 1,2-quinones are more stable than their 2,3-counterparts. We analyzed the reasons for the higher stability of the 1,2-isomers through energy decomposition analysis in the framework of Kohn–Sham molecular orbital theory. The results showed that we have to trace the origin of 1,2-quinones’ enhanced stability to the more efficient bonding in the π-electron system due to more favorable overlap between the SOMOπ of the ·C4n−2H2n–CH·· and ··CH–CO–CO· fragments in the 1,2-arrangement. Furthermore, whereas 1,2-quinones present a constant trend with their elongation for all analyzed properties (geometric, energetic, and electronic), 2,3-quinone derivatives present a substantial breaking in monotonicity.European Union in the framework of European Social Fund through the Warsaw University of Technology Development Programme. O.A. S., H. S. and T.M. K

    Cosmology with variable parameters and effective equation of state for Dark Energy

    Full text link
    A cosmological constant, Lambda, is the most natural candidate to explain the origin of the dark energy (DE) component in the Universe. However, due to experimental evidence that the equation of state (EOS) of the DE could be evolving with time/redshift (including the possibility that it might behave phantom-like near our time) has led theorists to emphasize that there might be a dynamical field (or some suitable combination of them) that could explain the behavior of the DE. While this is of course one possibility, here we show that there is no imperative need to invoke such dynamical fields and that a variable cosmological constant (including perhaps a variable Newton's constant too) may account in a natural way for all these features.Comment: LaTeX, 9 pages, 1 figure. Talk given at the 7th Intern. Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT 05
    • 

    corecore