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Abstract The thermal history of a large class of running
vacuum models in which the effective cosmological term is
described by a truncated power series of the Hubble rate,
whose dominant term is �(H) ∝ Hn+2, is discussed in
detail. Specifically, by assuming that the ultrarelativistic par-
ticles produced by the vacuum decay emerge into space-time
in such a way that its energy density ρr ∝ T 4, the tem-
perature evolution law and the increasing entropy function
are analytically calculated. For the whole class of vacuum
models explored here we find that the primeval value of the
comoving radiation entropy density (associated to effectively
massless particles) starts from zero and evolves extremely
fast until reaching a maximum near the end of the vacuum
decay phase, where it saturates. The late-time conservation
of the radiation entropy during the adiabatic FRW phase also
guarantees that the whole class of running vacuum models
predicts the same correct value of the present day entropy,
S0 ∼ 1087–1088 (in natural units), independently of the ini-
tial conditions. In addition, by assuming Gibbons–Hawking
temperature as an initial condition, we find that the ratio
between the late-time and primordial vacuum energy den-
sities is in agreement with naive estimates from quantum
field theory, namely, ρ�0/ρ�I ∼ 10−123. Such results are
independent on the power n and suggests that the observed
Universe may evolve smoothly between two extreme, unsta-
ble, non-singular de Sitter phases.

1 Introduction

A non-singular early de Sitter phase driven by a decaying
vacuum energy density was phenomenologically proposed
long ago to solve some problems of the Big-Bang cosmol-
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ogy [1,2]. The basic idea is closely related to early attempts
aimed at solving (or at least alleviating) some cosmic myster-
ies, such as the “graceful exit” problem, which plague many
inflationary scenarios (for recent reviews see [3,4]), and also
the CCP or cosmological constant problem [5–11], probably,
the deepest conundrum of all inflationary theories describing
the very early Universe.

Nevertheless, new theoretical developments are suggest-
ing a possible way to circumvent such problems. Results
based on the renormalization group (RG) theoretical tech-
niques of quantum field theory (QFT) in curved space-times
combined with some phenomenological insights provided
a set of dynamical �(H)-models (or running vacuum cos-
mologies) described by an even power series of the Hubble
rate [12–18] (cf. [11] for a review). In this line, we have
discussed in a series of recent works a unified class of mod-
els accounting for a complete cosmological history evolv-
ing between two extreme (primeval and late time) de Sitter
phases whose space-time dynamics is supported by a dynam-
ical decaying (or running) vacuum energy density [19–25].
In such models, the effective vacuum energy density is a
truncated power series of the Hubble rate, whose dominant
term is �(H) ∝ Hn+2, where for the sake of generality the
power n > 0. Unlike several inflationary variants endowed
with a preadiabatic phase, this decaying vacuum is respon-
sible for an increasing entropy evolution since the very early
Universe, described by the primeval non-singular de Sitter
space-time.

Several theoretical and observational properties of this
large class of non-singular running vacuum scenarios have
been discussed in the literature. In particular, Mimoso and
Pavón shown their thermodynamic consistency based on the
generalized second law of thermodynamics (GSLT) by tak-
ing into account quantum corrections to the Bekenstein–
Hawking entropy [26]. Many details regarding the late-time
dynamics can be found in Refs. [27–33], and especially in
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the recent, updated, and very comprehensive works of Refs.
[34,35]. More recently, even the solution of the coincidence
problem has been discussed in detail in the present frame-
work [36], as well as in generic decaying vacuum cosmolo-
gies [37,38].

Finally, let us mention that the running vacuum models
under study have recently been tested against the wealth of
SNIa + BAO + H(z) + LSS + BBN + CMB data—see [39]
for a short review—and they turn out to provide a quality
fit that is significantly better than the �CDM. This fact has
become most evident in the recent works [40,41], where it
is shown that the significance of the fit improvement is at
∼4σ c.l. Therefore, there is plenty of motivation for further
investigating these running vacuum models from different
perspectives, with the hope of finding possible connections
with fundamental aspects of the cosmic evolution

In the present work, we focus our attention on the entropy
of the cosmic microwave background radiation (CMBR) gen-
erated by this large class of non-singular decaying vacuum
cosmology. By considering that the decaying vacuum pro-
cess occurs under adiabatic conditions [in the sense that the
specific entropy (per particle) is preserved] this means that
the radiation produced satisfies the standard scaling laws,
namely, nr ∝ T 3 and ρr ∝ T 4 [43]. Under these condi-
tions, the final value of the entropy produced by the decaying
vacuum supporting the unstable primeval de Sitter phase is
exactly the present radiation entropy existing within the cur-
rent Hubble radius. Within this framework, the early decay-
ing vacuum process is not plagued with “graceful exit” prob-
lem of most inflationary variants and generates the correct
number, S0 � 1088 [42], regardless of the power n present
in the phenomenological decaying � (H)-term. In addition,
the ratio between the primeval and the present day vacuum
energy densities is ρ�0/ρ�I � 10−123, as required by some
naive estimates from quantum field theory.

The article is structured in the following manner. In
Sect. 2 we justify the phenomenological decaying vacuum
law adopted in the paper, whereas in Sect. 3 we set up the
basic set of equations and the transition from the early de
Sitter to the radiation phase is addressed. How inflation ends
and the temperature evolution law are presented in Sect. 4,
while in Sect. 5 we discuss the entropy production generated
by the decaying vacuum medium. Finally, the main conclu-
sions are summarized in Sect. 6.

2 General model for a complete cosmic history

The general �(H)-scenario accounting for a complete
chronology of the Universe (from de Sitter to de Sitter) is
based on the following expression for the dynamical cosmo-
logical term defining the relevant class of running vacuum
models under consideration [19–21]:

8πGρ� ≡ �(H) = c0 + 3νH2 + 3α
Hn+2

Hn
I

. (2.1)

Here H ≡ ȧ/a is the Hubble rate, a = a(t) is the scale
factor, and the over-dot denotes the derivative with respect to
the cosmic time t . By definition ρ�(H) = �(H)/8πG is the
corresponding vacuum energy density (G being Newton’s
constant). The even powers of H (therefore n = 2, 4, . . .)
are thought to be of more fundamental origin due the general
covariance of the effective action, as required by the QFT
treatment in curved space-time [11–18]. In the numerical
analysis, however, we will explore also the cases n = 1, 3
and 4 for comparison.

The dimensionless free parameters α and ν have distinct
status. The first can be absorbed (for each value of n in the
arbitrary scale HI so that it can be fixed to unity without loss
of generality (if the scale of inflation is not precisely known)
[24,36], whereas ν has been determined from observations
based on a joint likelihood analysis involving SNe Ia, bary-
onic acoustic oscillations (BAO), and cosmic background
radiation (CMB) data, with the result |ν| ≡ O(10−3) [27–
35]—see especially the most recent analyses in which the
ν = 0 result (associated to the �CDM in the post inflation-
ary time) is excluded at ∼ 4σ c.l. [40,41]. The small value
of ν is natural since at late times, the dynamical model of the
vacuum energy cannot depart too much from �CDM. In this
connection, by using a generic grand unified theory (GUT), it
has been shown that |ν| ∼ 10−6–10−3 [17]. Finally, the con-
stant c0 with the same dimension of � yields the dominant
term at very low energies, when H approaches the measured
value H0 (from now on the index “0” denotes the present day
values of the quantities).

3 Basic equations of the �(H) model

It is well known that the Einstein field equations (EFE) are
valid either for a strictly constant � or a dynamical one
[19,21]. Therefore, using the vacuum energy density ρ� =
�/(8πG) and the nominal pressure law p� = −ρ� one can
write the EFE in the framework of a spatially flat Friedmann–
Lemaître–Robertson–Walker (FLRW) space-time

Rμν − 1

2
gμνR = 8πGT̃μν (3.1)

where R is the Ricci scalar and T̃μν = (pm + ρm)uμuν −
(pm − ρ�)gμν is the total energy-momentum tensor and the
index m refers to the dominant fluid component (nonrela-
tivistic matter or radiation). Obviously, in our case, the only
difference with respect to the more conventional field equa-
tions is the fact that � = �(H). In this framework, the
local energy-conservation law, ∇μT̃μν = 0, which ensures
the covariance of the theory, reads
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ρ̇� + ρ̇m + 3(1 + ω)ρmH = 0, (3.2)

where we have used pm = ωρm for the ordinary cosmic fluid,
namely ω = 0 for dust and ω = 1/3 for radiation. In this
enlarged framework, the Friedmann equations are given by

8πGρT ≡ 8πGρm + �(H) = 3H2, (3.3)

8πGpT ≡ 8πGPm − �(H) = −2Ḣ − 3H2. (3.4)

By combining the above equations with the class of vacuum
models (2.1) one obtains the equation driving the evolution
of the Hubble parameter:

Ḣ = −3

2
(1 + ω)H2

(
1 − ν − c0

3H2 − α
Hn

Hn
I

)
. (3.5)

A solution of this equation in the high energy regime [where
the term c0/H2 � 1 of (3.5) can be neglected] is given by

H(a) = H̃I

[1 + D a3(1+ω) n (1−ν)/2]1/n
, (3.6)

where H̃I = ( 1−ν
α

)1/n
HI .

The combination of the EFE and the expression for �

yields

ρ�(a) = ρ̃I
1 + ν D a3n(1+ω)(1−ν)/2

[1 + D a3n(1+ω)(1−ν)/2]1+2/n
, (3.7)

ρr (a) = ρ̃I
(1 − ν)D a3n(1+ω)(1−ν)/2

[1 + D a3n(1+ω)(1−ν)/2]1+2/n
, (3.8)

ρT(a) = ρ̃I
1[

1 + D a3n(1+ω)(1−ν)/2
]2/n . (3.9)

The quantity ρ̃I in the above equations is the critical energy
density defining the primeval de Sitter stage

ρ̃I ≡ 3H̃2
I

8πG
. (3.10)

3.1 From initial de Sitter stage to radiation phase

For ω = 1/3 the energy density for the vacuum and radiation
read

ρ�(a) = ρ̃I
1 + ν D a2n(1−ν)

[1 + D a2n(1−ν)]1+2/n
, (3.11)

ρr (a) = ρ̃I
(1 − ν)D a2n(1−ν)

[1 + D a2n(1−ν)]1+2/n
, (3.12)

We can see from (3.11) that the value (3.10) just provides the
vacuum energy density for a → 0, namely ρ�(0) = ρ̃I . As
|ν| � 1 we also see that ρ̃I /ρI ∼ α−2/n , thereby effectively

showing that the constant α can be absorbed in the scale HI ,
as remarked before. Let us also emphasize from the previous
formula that for a → 0 we have ρr/ρ� ∝ a2n(1−ν) → 0, i.e.
the very early Universe is indeed vacuum dominated with a
negligible amount of radiation. In the rest of the paper, we
neglect the effects proportional to ν (which, since it is the
coefficient of H2, is not essential for the study of the early
Universe, the epoch where the H4-term is fully dominant).
Thus, without loss of generality, HI will be hereafter rescaled
so that α = 1 and we set ν = 0 in all the formulas. Within
this framework, we have H̃I = HI and Eq. (3.10) becomes

ρ̃I ≡ ρI = 3H2
I

8πG
. (3.13)

In addition, from Eq. (3.6) it follows that the scale factor of
the Universe takes on an exponential form a(t) ∼ ai e HI t as
long as the condition Da3(1+ω) � 1 is fulfilled. Obviously,
this means that the Universe is initially driven by a pure non-
singular de Sitter vacuum state, and therefore is inflating.
However, the above mentioned de Sitter inflationary phase is
only ephemeral. Indeed it is easy to check that in the post-
inflationary regime, i.e. for a 	 ai (with Da3n(1+ω) 	 1),
we are led to H ∝ a−2 (or a ∝ t1/2) for ω = 1/3 [see Eq.
(3.6)]. Therefore, the present model evolves smoothly from
inflation toward the conventional radiation stage, thereby
insuring that the initial very large amount of vacuum energy
density does not preclude the standard picture of the primor-
dial Big-Bang nucleossynthesis.

On the other hand, using Eq. (3.5) one may check that the
decelerating parameter, q = −ä/aH2 = −1 − Ḣ/H2, for
arbitrary values of the power index n, reads

q(H) = 2

[
1 −

(
H

HI

)n]
− 1, (3.14)

Naturally, the existence of the radiation stage is not enough
to identify precisely the end of inflation since the deceler-
ation parameter varied from q = −1 (de Sitter) to q = 1
(radiation) and the inflationary period finished when q = 0,
or equivalently, ä = 0. We will discuss this point in the next
section.

3.2 When exactly inflation ends?

In order to answer this question we first combine Eqs. (3.11)
and (3.12) so as to obtain the ratio of the radiation energy
density (ω = 1/3) to the vacuum energy density:

ρr (a)

ρ�(a)
= Da2n . (3.15)

In principle, inflation must end when both components—the
decreasing vacuum energy density and the created radiation
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energy density—contribute alike. Assuming that the scale
factor at the point of vacuum–radiation “equality” is a = aeq

the above expression implies that D a2n
eq = 1. This relation

enables us to rewrite the Hubble parameter (3.6) in the fol-
lowing way:

H(a, n) = HI[
1 + (

a/aeq
)2n

]1/n . (3.16)

It follows that the value of the Hubble function at the
vacuum–radiation equality depends on the value of the
parameter n and the initial scale HI :

Heq ≡ H(aeq) = HI

21/n
. (3.17)

Now, by inserting this value of Heq into Eq. (3.14) we
obtain effectively that q = 0 as should be expected. Hence,
once the arbitrary scale HI is fixed, the energy scale or the
moment for which the inflation ends is readily defined.

As remarked before, the start of the radiation phase in this
model is not characterized by the canonical radiation value
q = 1, as one might have naively expected. Due to the contin-
uous energy exchange between vacuum and radiation there
is a short period of time in which q goes from q = 0 to the
standard result q = 1. In the begin of the standard adiabatic
radiation regime the deceleration parameter is written as

q(Hrad) = 2

[
1 −

(
Hrad

HI

)n]
− 1. (3.18)

In the approach to the radiation phase one may safely assume
that it started when q(Hrad) ∼ 0.9999 with the Hubble
parameter given by Hrad = HI /(2×104)1/n [see Eq. (3.18)],
and from Eq. (3.16) we obtain arad/aeq � (2 × 104)1/2n .

At this point it is appropriate to make the following com-
ments concerning the cosmic history. First, in the full radi-
ation era the value of the scale factor of the Universe arad

becomes at least one order of magnitude larger than the cor-
responding value at the vacuum–radiation equality. Actually,
the total entropy generated by the vacuum decaying process
does not depend on the exact value of the ratio arad/aeq.
Second, when the radiation epoch is well left behind, the
Universe goes into the cold dark matter dominated era
(Einstein–de Sitter,a(t) ∝ t2/3); and, after some billion years
(∼7 Gyrs) it enters the present vacuum dominated phase, in
which � � �̃ =const—confer [29,34,40,41].

In the upper panel of Fig. 1 we provide the evolution of
the normalized Hubble parameter E(a, n) = H(a, n)/HI

for the following vacuum models, namely n = 1 (dashed
line), n = 2 (solid line), n = 3 (long dashed line) and n = 4
(dotted line) [see Eq. (2.1)]. We observe that for a � aeq

the cosmic evolution begins from an unstable inflationary

Fig. 1 Upper panel Evolution of the normalized Hubble parameter
E(a, n) = H(a, n)/HI during the inflationary epoch and its transition
into the FLRW radiation era. The Hubble parameter is normalized with
respect to HI , and the scale factor with respect to aeq, the value for
which ρ� = ρr (see the text). The lines correspond to the following
�(H) ∝ Hn+2/Hn

I scenarios [see Eq. (2.1], namely n = 1 (dashed),
n = 2 (solid), n = 3 (dot-dashed) and n = 4 (dotted). Lower panel We
provide the relative deviation [1−E(a, n)/E(a, 2)] % of the normalized
Hubble parameter for the n = 1, 3, 4 vacuum models with respect to
n = 2

phase [early de Sitter era, H � HI ] powered by the huge
value HI presumably connected to the scale of a Grand Uni-
fied Theory (GUT). Obviously, when the primeval inflation-
ary era is left behind, particularly for a 	 aeq, the cosmic
evolution enters smoothly in the standard radiation period
H ∝ a−2. Overall, we would like to emphasize that the
above natural mechanism for graceful exit is universal for
the whole class of vacuum models which obey the restriction
n > 0. Subsequently when the c0/H2 quantity in Eq. (3.5)
starts to dominate over Hn/Hn

I (where H � HI ) the radia-
tion component becomes sub-dominant and the matter dom-
inated era appears. This implies that Eq. (2.1) reduces to
�(H) = �̃+3ν(H2−H2

0 ), which generalizes the traditional
�CDM model. In this case the vacuum at the present time
(cosmological constant) becomes �̃ = 3c0 + 3νH2

0 , where
H0 is the Hubble constant. More details regarding the late-
time dynamics can be amply found in Refs. [27–29,32,33],
and especially in the recent, updated, and very comprehen-
sive works of Refs. [34,35].

Finally, by using n = 2 (corresponding to �(H) ∝
H4/H2

I in the early Universe) as a fiducial model in the large
class (2.1), we can appreciate in the bottom panel of Fig. 1
the relative deviation of the normalized Hubble parameters
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E(a, n) with respect to the n = 2 solution E(a, 2). Obvi-
ously, when we are far away from the epoch of the vacuum–
radiation equality the deviations from the fiducial E(a, 2)

case are extremely small. On the other hand there is a vis-
ible deviation from the latter around the transition region
a → aeq. This deviation becomes at the level of ∼ −30 %
and ∼ +20 % for n = 1 and n > 2 respectively.

4 Radiation and its temperature evolution law

Assuming an “adiabatic” decaying vacuum it has been found
that the specific entropy of the produced massless particles
remains constant, despite the fact that the total entropy can be
increasing.1 This implies that the energy and the number den-
sity as a function of the temperature are given by the standard
expressions, namely: ρr ∝ T 4

r and nr ∝ T 3
r , but the temper-

ature does not obey the scaling relation Tr (t) ∼ a(t)−1. Such
results were first derived based on a covariant nonequilibrium
thermodynamic description [43,44]), and, more recently,
using a kinetic theoretic approach [45,46]. In the follow-
ing, we discuss the temperature evolution law in the present
framework along these lines.

Let us start with Eq. (3.12), which is rewritten in terms of
aeq as follows:

ρr = ρI

(
a/aeq

)2n

[
1 + (a/aeq)2n

]1+2/n = π2

30
g∗T 4

r , (4.1)

where in the last equality we included the degrees of freedom
(d.o.f.) of the created massless modes through the g∗-factor
(see [42]). Now, by solving for the temperature we find

Tr = 2
n+2
4n Teq

(a/aeq)
n/2

[
1 + (a/aeq)2n

] n+2
4n

, (4.2)

where Teq = Tr (aeq). Obviously, Teq is the maximum value
of the radiation temperature (4.2) which is defined by

Teq =
(

15 ρI

2π2g∗

)1/4

=
(

45 H2
I

16π3Gg∗

)1/4

. (4.3)

As expected, Teq is given in terms of the arbitrary initial
scale of the primeval de Sitter phase (ρI , or equivalently
HI ). Unlike the value of Heq (see Eq. (3.17)), this value of
Teq is valid for the whole class of models since is does not
depend on the power n. In particular, this unique maximum
temperature suggests that the total entropy generated within

1 More precisely, the constancy of the specific entropy (per particle) of
the produced particles defines the “adiabatic” vacuum decaying process
(see Refs. [43,44]).

Fig. 2 Top panel The evolution of the radiation temperature (normal-
ized with respect to its maximum value) during the inflationary period
for several values of the free parameter n (see caption of Fig. 1 for defi-
nitions) and its transition into the FLRW radiation era. As in Fig. 1, the
lines correspond to the following scenarios, namely n = 1 (dashed),
n = 2 (solid), n = 3 (dot-dashed) and n = 4 (dotted). Bottom panel
The evolution of the normalized comoving entropy from the inflation-
ary period (where it increases) until reaching the saturation plateau
for a/arad ≥ 1. The asymptotic value corresponds the total entropy at
present

the horizon and presently observed is basically the same for
all models (see next section).

In the top panel of Fig. 2 we present the temperature evolu-
tion for several values of n. Note that in the very beginning of
the evolution (when a �→ 0), the temperature of the created
photons is also zero in accordance with the fact that ρr = 0
(see Eq. (4.1)). However, for finite values of a 
= 0, we
observe the existence of two regimes. In the first,a � aeq, the
radiation temperature (4.2) increases as Tr ∝ an/2 (it is lin-
ear for n = 2 [23]), reaching of course its maximum value at
a = aeq. In this non-adiabatic regime, the vacuum instability
guides constantly the model to the standard radiation epoch
from a process that started in the non-singular de Sitter phase.
Note that the evolution is different from inflationary models
where a highly non-adiabatic “reheating” process happens
immediately after the adiabatic evolution of the inflaton field
(see [42] and references therein). In the opposite regime,
a 	 aeq, we are well within the radiation epoch when all
running vacuum models decrease in the classical way, that
is, following an adiabatic scaling law, Tr ∝ a−1. As we shall
discuss below, the power-law increasing of the temperature
up to the vacuum–radiation equality, beyond which the Uni-
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verse enters the standard temperature regime, is the reason
of the large radiation entropy observed in the present epoch.

For the purpose of the present study it is also important
to find a way to calculate the primeval parameters (ρI , HI )
from first principles and indeed one may use the following
approaches (from now on we consider natural units, h̄ =
kB = c = 1). A first possibility is to consider that the initial
de Sitter energy density ρI is related with the Planck scale
MP through ρI = M4

P . An alternative approach is to connect
ρI to the GUT energy scale MX ∼ 1016 GeV and thus ρI =
M4

X (see Refs. [24,25]). A third possibility is to use the event
horizon (EH) of the de Sitter space-time. From the analysis
of Gibbons and Hawking [47] we know that the temperature
of the de Sitter EH in natural units is TGH = HI /2π , where
HI is the (constant) Hubble parameter at the de Sitter epoch.
In our case, following the third approach and combining the
last equality of Eqs. (4.1) and (3.13) we obtain

TI = HI

2π
=

(
45

πg∗

)1/2

MP , ρI = 135

2g∗M
4
P . (4.4)

Then inserting the above expressions into Eq. (4.3) it is easy
to show that the characteristic radiation temperature Teq

becomes

Teq =
(

45

2π g∗

)1/2

MP . (4.5)

It should be stressed that all the above characteristic scales
are slightly below the corresponding Planck scale, which
means that we are inside in the semi-classical QFT regime.
For instance, by taking g∗ = 106.75, which corresponds to
the particle content of the standard model of particle physics
we find from Eq. (4.5) that Teq � 0.26 MP which as expected
does not depend on the power n. In this respect if we take into
account the number of light d.o.f in the GUT then we find that
the characteristic temperature is still smaller (nearly 10% of
Planck mass). At this point it should be stressed that the pri-
mordial Gibbons–Hawking thermal bath was used only as a
peculiar initial condition to fix the arbitrary scale HI . As we
shall see in the next section, the ratio between the very early-
and late-time vacuum energy densities depends only on the
pair (HI , HF ) characterizing the extreme de Sitter phases.
It has the expected magnitude thereby also contributing to
alleviate the so-called cosmological constant problem in the
context of the such models (see Eq. (5.7)).

5 The radiation entropy

The total entropy of the radiation included in the present
Hubble radius (dH � H−1

0 ) reads

S0 = 2π2

45
gs,0 T

3
r0 H−3

0 � 2.3h−31087 ∼ 1087 − 1088,

(5.1)

where Tr0 � 2.725 ◦K � 2.35 × 10−13 GeV is the CMB
temperature at the present time and H0 = 2.133 h × 10−42

GeV (with h � 0.67) is the present day Hubble parameter.2

In order to check the viability of our model we need to take
into account that the total entropy should be measured from
the initial entropy generated by the decaying vacuum. Since
in our vacuum model the BBN proceeds fully standard, the
equilibrium entropy formula remains valid because only the
temperature law is modified [43–46]. Therefore, the radiation
entropy per comoving volume is given by the well-known
expressions

Sr ≡
(

ρr + pr
Tr

)
a3 ≡ 4

3

ρr

Tr
a3 = 2π2

45
gsT

3
r a

3, (5.2)

where gs is the entropy factor at temperature Tr (at very high
temperature gs is essentially equal to the effective number
of massless species, g∗. However, for lower values there is a
correction related to the freeze out of neutrinos and electron–
positron annihilation).

With the help of Eq. (4.2) the comoving entropy (5.2) can
be expressed as a function of the scale factor as follows:

Sr = 2(7n+6)/4nπ2gs
45

T 3
eqa

3
eq fn(r), (5.3)

where r ≡ a/aeq and the function fn(r) depends on the
parameter n as given below:

fn(r) = r
3(n+2)

2

(1 + r2n)
3(n+2)

4n

. (5.4)

The obtained result for the comoving entropy boils down
to the one derived in Ref. [23] for n = 2, as it should.
Note also that lima→0 Sr = 0, as it ought to be expected
from the fact that the initial de Sitter state is supported by
a pure vacuum (no radiation fluid). We also see that dur-
ing the inflationary phase (a � aeq), that is, at the early
stages of the evolution, the total comoving radiation entropy
of the Universe increases very fast; in fact, proportional to
a3(1+n/2). For instance, for n = 2 (corresponding to H4-
driven inflation) the initial entropy raises as ∼ a6. Note also
that for a = aeq, fn(r = 1) = 1/8(n+2)/4n and the asso-
ciated value S(aeq) is still not the total comoving entropy
that the decaying vacuum is able to generate (see discussion

2 Following standard lines, we have assumed the coefficient gs,0 =
2+6×(7/8)

(
Tν,0/Tr0

)3 � 3.91 is the entropy factor for the light d.o.f.
at the present epoch, in which we have used Tν,0/Tr0 = (4/11)1/3 [42].
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below Eq. (3.14)). This occurs only when a = arad so that
r2n = (arad/aeq)

2n 	 1 and fn(r) � 1 for all practical
purposes. At this point the generated comoving entropy Sr
reaches the final value, S f

rad = Sr (arad), when the standard
radiation phase begins.

It thus follows that the asymptotic (adiabatic) value of
(5.3), defined by f (r) � 1 for r 	 1, is given by:

Sr → S f
rad =

(
2(7n+6)/4nπ2gs

45

)
T 3

eqa
3
eq, (5.5)

a saturated value that must be compared with the present
day entropy since the subsequent evolution of the model is
isentropic.

In the bottom panel of Fig. 2 we show the entropy as a
function of the ratio r = a/aeq for several values of n. Notice
that the entropy is scaled to its value at the vacuum–radiation
equality. Initially, for a � aeq the amount of entropy dif-
fers among the vacuum models but when a → aeq the
corresponding entropies start to converge and subsequently
they reach a plateau, namely Sr (a)/Sr (aeq) → 8(n+2)/4n for
a 	 aeq, which characterizes the standard adiabatic phase,
which is sustained until the present days because the bulk of
the vacuum energy �(H) ∝ Hn+2/Hn

I already decayed.
Armed with the above expressions we now compute the

prediction of the total entropy inside the current horizon
volume ∼H−3

0 . Using the temperature evolution law [see
Eq. (4.2)] one may see that the expression T 3

eqa
3
eq, which

appears in the final entropy as given by (5.5), is equal to
2−3(n+2)/4nT 3

rada
3
rad, where Trad = Tr (arad) and arad was

defined in Sect. 3.1 [see discussion below Eq. (3.18)]. Note
that the n-dependence cancels out and we arrive at the same
final result (the power n is important only in the inflationary
phase since it determines the time scale in which the radiation
equilibrium phase is attained):

S f
rad =

(
2π2gs

45

)
T 3

rad a
3
rad = S0, (5.6)

where S0 is given by (5.1). In the last step we used the entropy
conservation law of the standard adiabatic radiation phase,
which implies that gs T 3

rad a
3
rad = gs,0 T 3

r0 a
3
0 .

It should be stressed that in the very early de Sitter era,
the radiation entropy is zero. However, it increases steadily
as Sr ∼ a3(1+n/2) and, finally, as shown in the bottom panel
Fig. 2, deep inside the radiation stage becomes constant and
approaching its asymptotic present day observed value, S0.

In other words the running vacuum model provides an
overall past evolution to the present �CDM cosmology by
connecting smoothly between two extreme cosmic eras (early
inflation and dark energy) driven by the vacuum medium [see
Eq. (3.5)]. Specifically, using Eq. (4.4) we find that the ratio
between the associated vacuum energy densities becomes

ρ�0

ρ�I
≡ ρ�F

ρ�I
= H2

F

H2
I

= H2
0 	�0

H2
I

= g∗
180π

H2
0 	�0

M2
P

�→ ρ�0 � 10−123ρ�I , (5.7)

in agreement with traditional estimates based on quantum
field theory (see Refs. [5,7]). Note that the late time de Sit-
ter scale, HF = H2

0 	�0 , was used in the above expression
[36]. To conclude, the decaying vacuum model explains the
amount of the radiation entropy and simultaneously it also
alleviates the so-called cosmological constant problem.

Needless to say, for a final resolution of the problem
one needs to understand the ultimate origin of the current
value of the cosmological constant. Remarkably, the obtained
description of the cosmic history is based on a unified dynam-
ical �(H)-term accounting for both the vacuum energy of the
early and of the current Universe. An alternative approach to
such description, based on the Grand Unified Theory frame-
work, can be shown to provide similar results; see [24,25].
Somehow this shows that the obtained results are truly robust
and independent of the initial conditions reigning in the
primeval Universe.

6 Discussion and conclusions

In this paper we have addressed a fundamental issue con-
cerning the thermodynamics of the early Universe. It is well
known that within the context of the concordance cosmolog-
ical model, or �CDM model, the thermal history is incom-
plete and it leads to inconsistencies with the present obser-
vations. One of the main problems is the well-known hori-
zon problem, which can be rephrased thermodynamically as
the entropy problem. The concordance model, in fact, can-
not offer an explanation for the large entropy enclosed in
our Hubble sphere, which is tantamount to say that it cannot
explain the large amount of causally disconnected regions
contained in it.

The well-known solution to these problems is inflation, a
patch that has to be added to the incomplete �CDM descrip-
tion. While in the more traditional approach inflation is
accomplished by postulating the existence of a new funda-
mental scalar field, called the inflaton, in the present work
we have proposed an entirely different (but no less efficient)
framework. It is based on the properties of a large class of
non-singular decaying vacuum models whose structure is that
of a truncated power series of the Hubble rate, �(H). The
involved powers to describe inflation must be higher than H2

since the latter can be relevant only for the current Universe.
In this work we have explored an inflationary dynamics

where the decaying vacuum is triggered by an arbitrary higher
power of the Hubble rate, Hn+2 (n > 0) recently proposed
[19–21].
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In such a unified model of the vacuum energy, the effective
cosmological term is a dynamical quantity, which evolves
extremely fast in the early Universe and goes through an
approximate de Sitter phase in our time—the dark energy
epoch. In principle, the late time�(H)-Universe as described
by Eq. (2.1) remains very close to the concordance model,
but it stills carries a mild vacuum evolution (hence a mildly
evolving cosmological term) compatible with observations.
In principle, such a term may act as a smoking gun of its
lengthy and energetic history; indeed, a much richer history
than that associated to the idle �-term inherent to the �CDM
model. However, since the late-time entropy production is
very small, for the sake of simplicity we have taken the ν

parameter equal to zero. Therefore, the model discussed here
can be seen as a primeval non-singular phase of the standard
�CDM model. Once we leave early times, the ν-parameter
recovers an important role which, in point of fact, makes the
running vacuum models not only compatible with the cur-
rent cosmological data but fully competitive with the �CDM
description [40,41].

We have studied in detail some important thermodynami-
cal aspects of that class of dynamical vacuum models. Most
noticeably we have focused on the issue of the radiation
entropy, its origin, and generation in the first stages of the
primeval Universe, and then its final impact on the current
epoch. Our calculations were based on the assumption that
the produced radiation from vacuum decay satisfy the stan-
dard relations, nr ∝ T 3 and ρr ∝ T 4 [43], a hypothesis
related with the idea of an “adiabatic” decaying vacuum and
the fact that the specific entropy is preserved during the pro-
cess [43]. The basic result is that at early times the tempera-
ture of the radiation increases (Tr ∝ an/2) until its maximum
value, determined by the equilibrium temperature Teq of the
vacuum–radiation transition (see Fig. 2) and the same hap-
pens with radiation energy density. As a consequence, the
entropy also increases at very early stages (Sr ∝ a3(n+2)/2)
being later on conserved during the radiation epoch (neglect-
ing the photon entropy produced in the electron–positron
annihilation). In this context we have found that the large
amount of radiation entropy now (S0 ∼ 1087–1088 in natu-
ral units) can be fully accountable in our dynamical vacuum
context. We have first shown that the entropy was produced
during the inflationary process itself at the expense of the
continuous vacuum decay. Subsequently, its production stag-
nated and this occurred shortly after the vacuum had lost its
energetic power and the Universe entered the standard radi-
ation phase. From this point onwards the adiabatic evolution
of the cosmos carried the comoving entropy unscathed until
our days. Overall, the wide class of running �(H)-vacuum
models provides not only an alternative scenario for infla-
tion (beyond the traditional inflationary scalar field models,
some of them in serious trouble after the analysis of Planck
2015 data [48]), but also a new clue for graceful exit, which is

indeed fully guaranteed within the �(H)-cosmology context
and does not depend on the power n of the Hubble rate. The
remarkable independence of both the graceful exit and the
entropy prediction from the power n singles out such class
of dynamical vacuum models from the rest.

Finally, as originally pointed out, the thermodynamical
solution ensures that no horizon problem exists because all
points of the current Hubble sphere remained causally con-
nected as of the early times when the huge entropy was gen-
erated by the decaying dynamics of the primeval vacuum.
Interestingly enough, the above features are not only univer-
sal for the entire class of �(H)-models but also independent
of the initial conditions of the early Universe. They provide
a rather robust basis for the dynamical �(H)-cosmology,
which is currently being tested and will continue being tested
against the increasingly accurate observations.
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A FRW radiation phase: Wien’s law and the relation
Trad/TI

In this appendix a simple argument based on the equilibrium
Wien’s law is adopted to show that the decaying vacuum
drives the model progressively to the radiation phase without
reheating period (no exit problem).

To begin with we recall that the initial conditions in our
picture are Tr = 0 and TGH = TI = HI /2π . However, due
to the evolution of the Universe, the Hubble parameter and
the horizon temperature diminish while the temperature of
the created radiation increases due to the continuous vacuum
decay.

The model evolves out of equilibrium because the entropy
generation is concomitant with the inflationary process. In
principle, the standard radiation FRW phase is reached when
the Wien law becomes strictly valid. In the following we show
that it provides a useful constraint on the value of the tem-
perature in the begin of the FRW phase thereby suggesting
the physical consistency of the model.
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In natural units, the standard Wien’s law (λmT =
0.290 cm K) reads:

λmT = 1.27. (A.1)

In order to equalize the horizon temperature, the wave-
length at the maximum black body intensity (in the begin
of the FRW phase, H = Hrad, T = Trad) is expected to be
λm < H−1

rad . Hence, the Wien law takes the form

1.27 = λmT < Trad/Hrad. (A.2)

Now, in our model we know that Hrad ∼ HI /(2.104)1/n (see
Sect. 3.2) and HI = 2πTI . Thus, it follows that

1.27 < Trad/Hrad <
(2.104)1/nTrad

2πTI
, (A.3)

which can be rewritten as

Trad

TI
>

7.98

(2.104)1/n
(A.4)

The above relation shows two interesting aspects of the
model: (i) Trad is much smaller than Teq = TI /21/n , but
it can assume values not dramatically too low in comparison
with the both characteristics scales (TI and Teq); a result in
agreement with the demonstrated progressive approach to the
FRW phase (see Eq. (4.2) and the associated comments), and
(ii) it also suggests that there is no exit problem in our model
(the reheating process is not needed for this class of decay-
ing vacuum models). For instance, by taking n= 1, 2 we see
that Trad > 4.10−4TI , and Trad > 0.056TI , respectively.
Note also that the inequality is still more safely satisfied for
values of n ≤ 2. This is comprehensible because inflation
ends faster for higher values of n.
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