409 research outputs found

    ЭлСктрохимичСская миграция: этапы ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠ°

    Get PDF
    The modern trend of miniaturization of electronics has also affected the aviation industry. With each new generation of aviation electronics (avionics), the layout of electronic components becomes smaller and smaller. This led to a significant complication of all electronic components of avionics in general, as well as compaction topology of printed circuit board (PCB) used in avionics, in particular. Any complication of electronic equipment, and especially important facilities, leads to increased requirements for reliability. Given that the aircraft equipment is operated almost constantly in extreme conditions, even the slightest probability of failure is unacceptable. That is why the physical reliability of avionics is so important. One of the factors significantly reducing the physical reliability of aviation electronics is electrochemical migration.Electrochemical migration can lead to failures in the operation of aviation electronics, to its complete failure, and even to a fire outbreak on the aircraft. Now the electrochemical migration is explored badly. Only the factors causing it and the consequences of electrochemical migration are determined, and the existing way of struggle it is either ineffective or significantly increase the weight and cost of aircraft equipment set, so that their use becomes impractical.This article presents experimental studies of the kinematics of electrochemical migration, the consequences of its occurrence, as well as, the way of struggle of the occurrence of electrochemical migration with the analysis of experimental data.БоврСмСнная тСндСнция ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€ΠΈΠ·Π°Ρ†ΠΈΠΈ элСктроники Π·Π°Ρ‚Ρ€ΠΎΠ½ΡƒΠ»Π° ΠΈ Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒ. Π‘ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ Π½ΠΎΠ²Ρ‹ΠΌ ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠ΅ΠΌ Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ элСктроники (Π°Π²ΠΈΠΎΠ½ΠΈΠΊΠΈ) ΠΊΠΎΠΌΠΏΠΎΠ½ΠΎΠ²ΠΊΠ° элСктронных ΡƒΠ·Π»ΠΎΠ² становится всС мСньшС ΠΈ мСньшС. Π­Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ ΡƒΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡŽ всСх элСктронных ΡƒΠ·Π»ΠΎΠ² Π°Π²ΠΈΠΎΠ½ΠΈΠΊΠΈ Π² Ρ†Π΅Π»ΠΎΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠΏΠ»ΠΎΡ‚Π½Π΅Π½ΠΈΡŽ Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ Π² Π°Π²ΠΈΠΎΠ½ΠΈΠΊΠ΅ Π² частности. Π›ΡŽΠ±ΠΎΠ΅ услоТнСниС элСктронной Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, Π° особСнно Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ отвСтствСнного назначСния, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ надСТности. Учитывая, Ρ‡Ρ‚ΠΎ авиационная Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Π° эксплуатируСтся практичСски постоянно, Π² ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условиях, Π΄Π°ΠΆΠ΅ малСйшая Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ возникновСния сбоя ΠΈΠ»ΠΈ ΠΎΡ‚ΠΊΠ°Π·Π° нСдопустима. ИмСнно поэтому физичСская Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ Π°Π²ΠΈΠΎΠ½ΠΈΠΊΠΈ Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ Π²Π°ΠΆΠ½Π°. Одним ΠΈΠ· Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², сущСствСнно ΡΠ½ΠΈΠΆΠ°ΡŽΡ‰ΠΈΠΌ Ρ„ΠΈΠ·ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ элСктроники, являСтся Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ элСктрохимичСской ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ.ЭлСктрохимичСская миграция способна привСсти ΠΊ сбоям Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ элСктроники, ΠΊ Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠΌΡƒ ΠΎΡ‚ΠΊΠ°Π·Ρƒ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π°ΠΆΠ΅ ΠΊ Π²ΠΎΠ·Π³ΠΎΡ€Π°Π½ΠΈΡŽ Π½Π° Π±ΠΎΡ€Ρ‚Ρƒ Π»Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°. На сСгодняшний дСнь явлСниС элСктрохимичСской ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΎ достаточно ΠΏΠ»ΠΎΡ…ΠΎ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ лишь Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹, Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ Π΅Π΅, ΠΈ послСдствия элСктрохимичСской ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ, Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ способы Π±ΠΎΡ€ΡŒΠ±Ρ‹ с этим явлСниСм Π»ΠΈΠ±ΠΎ нСэффСктивны, Π»ΠΈΠ±ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ вСс ΠΈ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ Π±ΠΎΡ€Ρ‚ΠΎΠ²ΠΎΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ становится нСцСлСсообразным.Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ приводятся ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ исслСдования ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ явлСния элСктрохимичСской ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ, послСдствий Π΅Π΅ возникновСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ способ Π±ΠΎΡ€ΡŒΠ±Ρ‹ с Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ΠΌ явлСния элСктрохимичСской ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ

    Evidence for a high-energy cosmic-ray spectrum cutoff

    Get PDF
    Journal ArticleWe report a measurement of the ultrahigh-energy cosmic-ray spectrum using an atmospheric fluorescence technique for extensive-air-shower detection. The differential spectrum between 0.1 and 10 EeV (1 EeV = 10^18 eV) is well fitted by a power law with slope 2.94 Β±0.02. Above 10 EeV evidence is presented for the development of a spectral " bump " followed by a cutoff at 70 EeV

    Limits on deeply penetrating particles in the >10^17 eV cosmic-ray flux

    Get PDF
    Journal ArticleWe report on a search for deeply penetrating particles in the > 10^17 eV cosmic-ray flux using the University of Utah Fly's Eye detector. No such events have been found in 6 x 106 sec of running time. We consequently set limits on the following: quark matter in the primary cosmic-ray flux, high-energy long-lived weakly interacting particles produced in proton-air interactions, such as Ο„'s; astrophysical neutrino flux; and other hypothetical high-energy weakly interacting components of the cosmic-ray flux such as photinos

    Extremely high energy cosmic rays and the Auger Observatory

    Get PDF
    Over the last 30 years or so, a handful of events observed in ground-based cosmic ray detectors seem to have opened a new window in the field of high-energy astrophysics. These events have energies exceeding 5x10**19 eV (the region of the so-called Greisen-Zatsepin-Kuzmin spectral cutoff); they seem to come from no known astrophysical source; their chemical composition is mostly unknown; no conventional accelerating mechanism is considered as being able to explain their production and propagation to earth. Only a dedicated detector can bring in the high-quality and statistically significant data needed to solve this long-lasting puzzle: this is the aim of the Auger Observatory project around which a world-wide collaboration is being mobilized.Comment: 14 pages, no figures, Latex, to be published in Proc. of the 7th Int. Workshop on Neutrino Telescopes (Venice 27/2-1/3 1996

    Disappointing model for ultrahigh-energy cosmic rays

    Full text link
    Data of Pierre Auger Observatory show a proton-dominated chemical composition of ultrahigh-energy cosmic rays spectrum at (1 - 3) EeV and a steadily heavier composition with energy increasing. In order to explain this feature we assume that (1 - 3) EeV protons are extragalactic and derive their maximum acceleration energy, E_p^{max} \simeq 4 EeV, compatible with both the spectrum and the composition. We also assume the rigidity-dependent acceleration mechanism of heavier nuclei, E_A^{max} = Z x E_p^{max}. The proposed model has rather disappointing consequences: i) no pion photo-production on CMB photons in extragalactic space and hence ii) no high-energy cosmogenic neutrino fluxes; iii) no GZK-cutoff in the spectrum; iv) no correlation with nearby sources due to nuclei deflection in the galactic magnetic fields up to highest energies.Comment: 4 pages, 7 figures, the talk presented by A. Gazizov at NPA5 Conference, April 3-8, 2011, Eilat, Israe

    ВСстированиС скрытых Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² соСдинСниях

    Get PDF
    Electronic instrumentation has a constant growth density layout and functionality. This entails an increase in the density of interconnection elements by increasing their number and reducing the size of it. The growing cost of interconnection structures (printed circuit boards, printing and wired mounting) associated with their complexity and increase of their reliability requirements, result in the search of new and improved non-destructive diagnostic methods and means of control. However, the existing methods do not allow control interconnects with sufficient certainty to identify a significant number of hidden defects. This class of defects can be diagnosed by means of non-destructive testing of interconnections, based on the detection of controlled circuit reaction to a current. The paper describes the principles for calculating the current to exercise that control.Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ΅ приборостроСниС находится Π² состоянии постоянного роста плотности ΠΊΠΎΠΌΠΏΠΎΠ½ΠΎΠ²ΠΊΠΈ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Π­Ρ‚ΠΎ Π²Π»Π΅Ρ‡Π΅Ρ‚ Π·Π° собой рост плотности элСмСнтов мСТсоСдинСний Π·Π° счСт увСличСния ΠΈΡ… количСства ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ². ВозрастаниС стоимости конструкций мСТсоСдинСний (ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚, ΠΏΠ΅Ρ‡Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½Ρ‚Π°ΠΆΠ°), связанноС с ΠΈΡ… услоТнСниСм ΠΈ возрастаниСм Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ надСТности, обуславливаСт поиск Π½ΠΎΠ²Ρ‹Ρ… ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π½Π΅Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰ΠΈΡ… диагностичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈ срСдств контроля. Однако, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ контроля мСТсоСдинСний Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ с достаточной Π΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ скрытых Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ². Π’Π°ΠΊΠΈΠ΅ Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ диагностированы ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Π½Π΅Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎ контроля соСдинСний, основанного Π½Π° рСгистрации Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ†Π΅ΠΏΠ΅ΠΉ Π½Π° воздСйствиС ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Ρ‚ΠΎΠΊΠ°. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ расчСта ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Ρ‚ΠΎΠΊΠ° ΠΈ способ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ контроля

    Java-MaC A Run-time Assurance Tool for Java Programs

    Get PDF
    AbstractWe describe Java-MaC, a prototype implementation of the Monitoring and Checking (MaC) architecture for Java programs. The MaC architecture provides assurance about the correct execution of target programs at run-time. Monitoring and checking is performed based on a formal specification of system requirements. MaC bridges the gap between formal verification, which ensures the correctness of a design rather than an implementation, and testing, which only partially validates an implementation. Java-MaC provides a lightweight formal method solution as a viable complement to the current heavyweight formal methods. An important aspect of the architecture is the clear separation between monitoring implementation-dependent low-level behaviors and checking high-level behaviors against a formal requirements specification. Another salient feature is automatic instrumentation of executable codes. The paper presents an overview of the MaC architecture and a prototype implementation Java-MaC
    • …
    corecore