1,511 research outputs found

    Mutual positioning of the being assembled cylindrical parts under controlled dry friction

    Get PDF
    Applied for automated assembly the displacement of the part under controlled dry friction is analyzed. The paper deals with vibrational non - impact displacement of a mobile - based body when the body is subjected to kinematical excitement. Based on a simplified dynamic model of vibratory displacement under controlled dry friction the areas of the system and excitation parameters sets exist with different motion regimes and when controlling dry friction at particular time intervals. There were formed dependencies of vibratory displacement from dynamic system and excitation parameters. Based on performed part–to–part positioning analysis were designed schemas of vibratory assembly devices under controlled of the dry friction those may be used for joining of the cylindrical part

    Near-infrared spectroscopy: bilateral brain monitoring in termed newborns with hypoxic-ischemic lesions.

    Get PDF
    Assessment of cerebral oxygenation using near-infrared spectroscopy (near-infrared spectroscopy, near-infrared spectroscopy, NIRS) has significant strong correlation with the assessment of brain perfusion using MRI in full-term infants with severe hypoxic-ischemic encephalopathy. However, there are still no recommendations on the use of NIRS monitoring data for making important clinical decisions in newborns with asphyxia and hypoxic-ischemic encephalopathy in routine clinical practice. The role of interhemispheric variations in the values of regional tissue oxygen saturation (rSO2) in severe hypoxic-ischemic encephalopathy against the background of therapeutic hypothermia remains unexplored. The aim of the study was to evaluate the results of bilateral brain monitoring using NIRS in full-term newborns with severe hypoxic-ischemic lesions (with and without destructive changes in brain tissue). All examined children were full-term newborns with severe asphyxia at birth, who underwent therapeutic hypothermia. We analyzed the results of NIRS recordings of 33 newborns who did not have signs of destructive hypoxic-ischemic brain damage, and NIRS data of 15 newborns who were diagnosed with signs of destructive hypoxic-ischemic brain damage. The hemisphere difference in cerebral oximetry indices was presented in the form of statistical processing results - average, median, mode, 25th percentile, 75th percentile of pairwise comparisons, namely the difference of values (ΔrSO2) of the measurement “ΔrSO2=rSO2on the right-rSO2on the left” in each moment of recording (12000-22000 measurement moments during the monitoring session), as well as the percentage of recording time when the ΔrSO2 value was recorded below the 25th percentile and above the 75th percentile. Reliable correlations between the fact of the formation of destructive hypoxic-ischemic brain lesions in full-term newborns and the average ΔrSO2 values of the NIRS record (R=-0.410), median values (R=-0.400), modes (R=-0.357), and values 25-the percentile ΔrSO2 (R=-0.326) and the 75th percentile ΔrSO2 (R=-0.429) were registered. In 73.3% of children with destructive hypoxic-ischemic lesions, the average ΔrSO2 values were higher for the right hemisphere (the average ΔrSO2 value of the group was 0.11±2.39%). In 93.9% of children without destructive brain damage, the average rSO2 values were higher for the right hemisphere (the average ΔrSO2 value of the group was 6.92±0.80%). Significant differences in mean ΔrSO2 (p=0.005) were determined. Mean ΔrSO2 median for the group with destructive brain lesions was 0.33±2.38%, for the group without destructive lesions - 6.88±0.82% (p=0.004), the average ΔrSO2 mode for the group with destructive brain lesions was 1,46±1.73%, for the group without destructive lesions - 6.51±0.92% (p=0.014). The average of the 25th percentile of ΔrSO2 values for the group with destructive brain lesions was (-1.93)±2.72%, and for the group without destructive lesions it was 4.42±0.84% (p=0.026). The average of the 75th percentile of ΔrSO2 values for the group with destructive brain lesions was 2.87±2.11%, and for the group without destructive lesions it was 9.33±0.80% (p=0.003). The results of bilateral brain monitoring using NIRS in full-term newborns with severe hypoxic-ischemic lesions on the background of therapeutic hypothermia have significant dif­ferences between groups of children with and without destructive changes in brain tissue. In newborns with destructive brain lesions, a decrease in manifestations of dominance of rSO2 indicators of the right hemisphere was recorded, namely, significantly lower mean ΔrSO2, median, mode, average values of the 25th and 75th percentiles ΔrSO2

    Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer's disease.

    Get PDF
    The innate immune system plays an integral role in the brain. Synaptic pruning, a fundamental process in developmental circuit refinement, is partially mediated by neuroimmune signalling at the synapse. In particular, microglia, the major tissue-resident macrophages of the brain, and the classical complement cascade, an innate immune pathway that aids in the clearance of unwanted material, have been implicated in mediating synapse elimination. Emerging data suggest that improper signalling of the innate immune pathway at the synapse leads to pathological synapse loss in age-related neurodegenerative diseases, including Alzheimer's disease. Now the key questions are whether synapses are targeted by complement and, if so, which synapses are vulnerable to elimination. Here, we review recent work implicating C1q, the initiator of the classical complement cascade, and surrounding glia as mediators of synapse loss. We examine how synapses could undergo apoptosis-like pathways in the Alzheimer brain, which may lead to the externalisation of phosphatidylserine on synapses. Finally, we discuss potential roles for microglia and astrocytes in this 'synaptic apoptosis'. Critical insight into neuroimmune regulatory pathways on synapses will be key to developing effective targets against pathological synapse loss in dementia

    ANALYSIS OF THE CHEMICAL COMPOSITION OF CHAROITE ROCKS

    Get PDF
    The unique charoite mineralization, established on the Murun alkaline massif in the northwestern part of the Aldan shield on the border of the Irkutsk region and Yakutia, is still of great interest to some of researchers (geologists, crystallographers, geochemists, etc.). The outcrops of charoite-bearing rocks at the “Sirenevyi Kamen” deposit are noted both in the indigenous outcrops and in eluvial clatters [Bondarenko, 2009].The unique charoite mineralization, established on the Murun alkaline massif in the northwestern part of the Aldan shield on the border of the Irkutsk region and Yakutia, is still of great interest to some of researchers (geologists, crystallographers, geochemists, etc.). The outcrops of charoite-bearing rocks at the “Sirenevyi Kamen” deposit are noted both in the indigenous outcrops and in eluvial clatters [Bondarenko, 2009]

    Vacuum polarization alters the spectra of accreting X-ray pulsars

    Full text link
    It is a common belief that for magnetic fields typical for accreting neutron stars in High-Mass X-ray Binaries vacuum polarization only affects the propagation of polarized emission in the neutron star magnetosphere. We show that vacuum resonances can significantly alter the emission from the poles of accreting neutron stars. The effect is similar to vacuum polarization in the atmospheres of isolated neutron stars and can result in suppression of the continuum and the cyclotron lines. It is enhanced by magnetic Comptonization in the hot plasma and proximity to the electron cyclotron resonance. We present several models to illustrate the vacuum polarization effect for various optically thick media and discuss how the choice of polarization modes affects the properties of the emergent radiation by simulating polarized energy- and angle-dependent radiative transfer. Polarization effects, including vacuum polarization, crucially alter the emission properties. Together with strongly angle- and energy- dependent magnetic Comptonization, they result in a complex spectral shape, which can be described by dips and humps on top of a power-law-like continuum with high-energy cutoff. These effects provide a possible explanation for the common necessity of additional broad Gaussian components and two-component Comptonization models that are used to describe spectra of accreting X-ray pulsars. We also demonstrate the character of depolarization introduced by the radiation field's propagation inside the inhomogeneous emission region.Comment: 4 pages, 6 figures, accepted for publication in A&A Letter

    The role of biota in soil profile formation and soil functioning: new materials and interpretation of well-known facts and existing concepts

    Get PDF
    Review of the monograph by A.D. Fokin and S.P. Torshin “Plants in the Life of Soils and Terrestrial Ecosystems. Nontraditional Approaches and Solutions on the Behavior of Biologically Significant Elements” published in 2020 by Lap Lambert Academic Publishing, ISBN 978-620-2-53005-7. In the monograph by A.D. Fokin and S.P. Torshin, the reader finds an original and not always traditional for soil scientists, consideration and discussion of a number of fundamental problems of the development of a soil profile and modern soil functioning and of the role of plants and microorganisms in these processes. The authors of the monograph make us think about the validity of some generally accepted concepts and hypothesis, especially those concerning transport flows of matter in soils and their modeling. Attention is drawn to the usually underestimated role of the uplifting – ascending fluxes of matter along the conductive systems of plants, and to the localization of living roots and organic residues in soils. The latter factor plays an important role in the development of intrahorizontal differentiation of the soil material and in the root nutrition of plants. The great advantage of the book is the availability of abundant experimental material obtained by unique methods developed by the authors, simple and effective, which have no analogues in the world literature. Application of these methods, allows, in particular, determining the lifetime of the aggregate in soddy-podzolic soils and establishing the trends in the root uptake of radionuclides from the surface and from the inner part of peds. In the end a general conclusion is formulated that in the course of modern soil functioning, the soil-profile redistribution of matter is performed mainly within the limits of the biological cycle of elements. Many of the problems and ideas discussed in the monograph go far beyond the soil science, therefore the book is of great interest for a wide range of specialists in environmental and plant sciences, in agricultural chemistry, forestry and in various branches of geosciences
    corecore