34 research outputs found
Creating a junior minds' community : The Swiss Association of Young Neurologists
Connecting with junior colleagues across the three linguistic regions of Switzerland, knowing the essentials of the Swiss neurology curriculum, conducting research, considering a fellowship abroad, preparing neurological activity in private practice - all these topics are of vital interest for young neurologists. However, keeping up with such essential aspects of neurological training usually turns out quite demanding for residents as individuals. Junior neurologists’ associations help to deal with such issues. In 2014, a group of enthusiastic juniors, encouraged by several senior neurologists, founded the Swiss Association of Young Neurologists (SAYN) within the Swiss Neurological Society (SNS). Here, we describe key missions and activities of the SAYN, its role and interactions within the Swiss and European clinical neuroscience community, and provide an outlook on future challenges and opportunities for young neurologists
Structural Loop Between the Cerebellum and the Superior Temporal Sulcus: Evidence from Diffusion Tensor Imaging
The cerebellum is believed to play an essential role in a variety of motor and cognitive functions through reciprocal interaction with the cerebral cortex. Recent findings suggest that cerebellar involvement in the network specialized for visual body motion processing may be mediated through interaction with the right superior temporal sulcus (STS). Yet, the underlying pattern of structural connectivity between the STS and the cerebellum remains unidentified. In the present work, diffusion tensor imaging analysis on seeds derived from functional magnetic resonance imaging during a task on point-light biological motion perception uncovers a structural pathway between the right posterior STS and the left cerebellar lobule Crus I. The findings suggest existence of a structural loop underpinning bidirectional communication between the STS and cerebellum. This connection might also be of potential value for other visual social abilitie
Brain network analyses in clinical neuroscience
Network analyses are now considered fundamental for understanding brain function. Nonetheless neuroimaging characterisations of connectivity are just emerging in clinical neuroscience. Here, we briefly outline the concepts underlying structural, functional and effective connectivity, and discuss some cutting-edge approaches to the quantitative assessment of brain architecture and dynamics. As illustrated by recent evidence, comprehensive and integrative network analyses offer the potential for refining pathophysiological concepts and therapeutic strategies in neurological and psychiatric conditions across the lifespan
Consensus Paper: The Role of the Cerebellum in Perceptual Processes
Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception
Non-Standard Errors
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants