114 research outputs found

    Two-photon Hong-Ou-Mandel interference and quantum entanglement between the frequency-converted idler photon and the signal photon

    Full text link
    Quantum frequency up-conversion is a cutting-edge technique that leverages the interaction between photons and quantum systems to shift the frequency of single photons from a lower frequency to a higher frequency. If the photon before up-conversion was one of the entangled pair, then it is important to understand how much entanglement is preserved after up-conversion. In this study, we present a theoretical analysis of the transformation of the time-dependent second-order quantum correlations in photon pairs and find the preservation of such correlations under fairly general conditions. We also analyze the two-photon Hong-Ou-Mandel interference between the frequency-converted idler photon and the signal photon. The visibility of the two-photon interference is sensitive to the magnitude of the frequency conversion, and it improves when the frequency separation between two photons goes down

    Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/We investigate the possibility of using a hybrid coherent anti-Stokes Raman scattering technique for noninvasive monitoring of blood glucose levels. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the nonresonant four-wave mixing background while maximizing the Raman-resonant signal and allows rapid and highly specific detection even in the presence of multiple scattering. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically relevant glucose levels

    Dual-tip-enhanced ultrafast CARS nanoscopy

    Get PDF
    Coherent anti-Stokes Raman scattering (CARS) and, in particular, femtosecond adaptive spectroscopic techniques (FAST CARS) have been successfully used for molecular spectroscopy and microscopic imaging. Recent progress in ultrafast nanooptics provides flexibility in generation and control of optical near fields, and holds promise to extend CARS techniques to the nanoscale. In this theoretical study, we demonstrate ultrafast subwavelentgh control of coherent Raman spectra of molecules in the vicinity of a plasmonic nanostructure excited by ultrashort laser pulses. The simulated nanostructure design provides localized excitation sources for CARS by focusing incident laser pulses into subwavelength hot spots via two self-similar nanolens antennas connected by a waveguide. Hot-spot-selective dual-tip-enhanced CARS (2TECARS) nanospectra of DNA nucleobases are obtained by simulating optimized pump, Stokes and probe near fields using tips, laser polarization- and pulse-shaping. This technique may be used to explore ultrafast energy and electron transfer dynamics in real space with nanometre resolution and to develop novel approaches to DNA sequencing.Comment: 11 pages, 6 figure
    • …
    corecore