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Tracking molecular wave packets in cesium dimers by coherent Raman scattering
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We explore wave-packet dynamics in the ground X 1�+
g and excited B 1�u states of cesium dimers (Cs2). In

particular, we study the dependence of the wave-packet dynamics on the relative timing between femtosecond
pump, Stokes, and probe pulses in a nondegenerate BOXCARS beam geometry, which are commonly used
for coherent anti-Stokes Raman scattering (CARS) spectroscopy. The experimental results are elucidated by
theoretical calculations, which are based on the Liouville equations for the density matrix for the molecular
states. We observe oscillations in CARS signals as functions of both Stokes and probe pulse delays with respect
to the pump pulse. The oscillation period relates to the wave-packet motion cycle in either the ground or excited
state of Cs2 molecules, depending on the sequence of the input laser pulses in time. The performed analysis
can be applied to study and/or manipulate wave-packet dynamics in a variety of molecules. It also provides an
excellent test platform for theoretical models of molecular systems.
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I. INTRODUCTION

Femtosecond laser pulses have been used to study the
transient ultrafast dynamical processes in molecular systems
and launched a research field, which is called femtochemistry
[1,2]. The study of the vibrational and rotational wave
packets in molecules on femtosecond time scale has been of
interest for several decades [3]. Recently, the vibrational and
rotational wave-packet dynamics in different molecules have
been observed by adopting the two-color, pump probe [4–6]
and coherent femtosecond four-wave mixing (FWM) spec-
troscopic [7–10] techniques. Resonant coherent anti-Stokes
Raman scattering (CARS) spectroscopy has been used to
extract a time-dependent wave function of a reacting molecule
[11]. It has been shown that the phase-matching condition
in the FWM process is crucial in monitoring the molecular
dynamics at single-laser-shot level [12,13]. The effect of the
impulsive excitation and the momentum transfer [14,15] exists
in the FWM experiment with ultrashort pulses.

Coherent laser control of the quantum dynamics in the
physicochemical processes has been studied [2,16]. In particu-
lar, temporal coherent control on ultrashort time scale in atomic
rubidium vapor has been reported [17,18]. The study of quan-
tum interference of molecular eigenstates has led to a method
to manipulate the wave packets with promising applications
in various coherent control techniques [19]. Two-dimensional
spectroscopy has served as a useful tool, which provides a
clear physical picture of the wave-packet temporal evolution
[20]. Coherent optical response in gas has been revealed by
using the Fourier transform of two-dimensional spectroscopic
measurements [21,22]. A time-dependent perturbation theory
has been adopted to understand various FWM processes
[23–25]. Density matrix formalism [26] has proved to be

an important tool to interpret molecular coherent processes
observed in femtosecond experiments [27,28].

In the present work, we study ultrafast wave-packet
dynamics in cesium dimers by using the CARS technique
in the nondegenerate BOXCARS beam arrangement. The
main advantage of our experimental configuration is the
ability to perform two-dimensional types of measurements.
In particular, the measured CARS signal is studied as a two-
dimensional function of pump-Stokes and pump-probe delays.
In order to model these experiments, we adopt the Liouville’s
equation for the density matrix for the electronic excited
(B 1�u) and ground (X 1�+

g ) states with the appropriate
Franck-Condon factors. The electric dipole moment between
the (B 1�u) and (X 1�+

g ) states could be approximated to
be a constant if the locations of the nuclei are not displaced
far from the equilibrium [29]. In our experiment, we note
that the rotational levels are also heavily populated. However,
for simplicity’s sake, the rotational contributions have been
neglected in the theoretical model with the Franck-Condon
principle.

Our paper is organized as follows. We present the experi-
mental setup and theoretical model in the next two sections. In
Sec. IV, the experimental and theoretical results are analyzed
in detail. We summarize our results in the last section.

II. EXPERIMENTAL SETUP

The Cs2 wave-packet dynamics is studied via a two-
color CARS scheme. The input pump, Stokes, and probe
beams are arranged in the folded-BOXCARS geometry. The
experimental setup is shown in Fig. 1.
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FIG. 1. (Color online) An experimental setup: (a) A schematic
layout. OPA, optical parametric amplifier; BS1,2, beamsplitter;
DS1,2, delay stage; Spec., spectrograph; CCD, charge coupled device.
(b) The measured spectra of pump, probe, and Stokes beams. Inset:
A folded-BOXCARS beam arrangement used in the experiment. A
spot on the top right corner (blue) corresponds to the phase-matched
CARS signal and the other spots correspond to the input beams.

We use a commercially available femtosecond Ti:sapphire
regenerative amplifier system (Legend, Coherent) and an
optical parametric amplifier (OPA: OPerA-VIS/UV, Coherent)
to generate passively synchronized 1-kHz pulse trains of the
two colors. The pump and probe beams are produced by
splitting the output beam of the OPA and tuned to center
wavelength 760 nm [see Fig. 1(b)]. The spectral full-width-
at-half-maximum (FWHM) is about 12 nm. For the pump and
probe beams, average power is attenuated to about 1 mW
(corresponds to 1 μJ/pulse) in front of the Cs cell. For the
Stokes beam, we use a small fraction of the regenerative
amplifier output beam. Its spectrum is centered at 805 nm,
and the spectral FWHM is close to 30 nm. The beam passes
through a pulse shaper (Silhouette, Coherent), which corrects
phase distortions along the Stokes beam path down to the Cs
cell by means of multiphoton intrapulse interference phase
scan (MIIPS) [30]. The Stokes pulse energy at the target

is ∼0.1 μJ. The relative timing between the pump, Stokes,
and probe pulses is adjusted by the two automated delay
lines. All the beams are focused and overlapped (under ∼2 ×
10−2 rad angle) inside a 7.5-cm long Cs cell heated up
to 240 ◦C. At this temperature, the number density of Cs2

molecules is about 2.3 × 1013 cm−3 [31]. However we note
that the number density of cesium atoms is approximately two
orders of magnitude higher than that for Cs2 molecules.

The generated CARS signal (near 720 nm) is spatially
filtered and focused by a lens at the entrance slit of a
spectrograph (Chromex Spectrograph 250is) with a liquid-
nitrogen-cooled CCD (Spec-10, Princeton Instruments). For
most of our measurements, the detected signal is spectrally
integrated over a narrow band, filtering the residual pump and
probe contributions.

III. THEORETICAL MODEL

In this section, we present a theoretical model suitable
to interpret the time-delayed coherent Raman scattering
measurement. We classify the present problem by the order
of the arrival times of the three input pulses into the cell.
First we consider the case of Stokes-pump-probe configuration
where the Stokes pulse arrives first followed by the pump and
probe pulses. In this case, there are two possible pathways
as shown in Fig. 2. The upper levels, |a〉 and |a′〉, are the
vibrational levels in the excited state, B 1�u, while the lower
two, |b〉 and |c〉, are the vibrational levels in the ground state, X
1�+

g . Note that the level here represents many closely spaced
energy levels. The initial population is equally distributed
over all the vibrational levels in the ground state. A reason
is that the cesium dimer is produced by the hot cesium atomic
collisions, which excites the cesium molecules to the upper
vibrational levels in the ground state. A nonradiative relaxation
between vibrational levels enables the molecules being equally
populated over all the ground-state vibrational levels.

The derivations of the equations that describe the both
pathways are similar. In particular, for pathway (a) in Fig. 2,
the Hamiltonian under the near-resonance approximation is

H = H0 + HI , (1)

where the unperturbed part of the Hamiltonian is

H0 = h̄ωa′ |a′〉〈a′| + h̄ωa|a〉〈a| + h̄ωb|b〉〈b| + h̄ωc|c〉〈c|,
(2)
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FIG. 2. (Color online) Energy level diagrams for the two possible pathways [(a) and (b)] in the Stokes-pump-probe configuration and the
other two possible pathways [(c) and (d)] in the pump-Stokes-probe configuration. The upper (lower) two levels are the vibrational levels in
the excited (ground) electronic state.
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and the interaction part of the Hamiltonian is

HI = −℘abEs |a〉〈b| − ℘a′bEp|a′〉〈b| − ℘acEpr |a〉〈c| + H.c..

(3)

The energy h̄ω for the vibrational level ν is defined as [32]

h̄ω = h̄ωe

(
ν + 1

2

) − h̄ωeχe

(
ν + 1

2

)2
, (4)

where ωe is the vibrational frequency of the corresponding
electronic state and ωeχe is the vibrational anharmonicity. The
pulse field is described by a Gaussian shape pulse as

Ei = Eiexp

[
− 1

2

(
t − τi

σi

)2 ]
cos [νi (t − τi) − ki · x] ,

(5)

where i stands for s, p, and pr representing Stokes, pump,
and probe, respectively, τi is the time delay of the pulse, σi is
the spectral width, νi is the frequency of the pulse, and ki is

the wave vector. The equation of motion for the density matrix
is [26]

ρ̇ = − i

h̄
[H,ρ] . (6)

There are no relaxation terms in this equation because the
effective lifetime of the cesium molecule due to the frequent
collisions with the cesium atoms (about 1 ns) is much
longer than the time scale (∼1 ps) considered in the present
experiment. The signal intensity is given by

S =
∫ ∞

−∞

∣∣∣∣∣
∑

℘ca′ρa′c + c.c.

∣∣∣∣∣
2

dt. (7)

The initial conditions here are ρij (−∞) = 0, except for that
ρbb (−∞) = ρ

(−∞)
bb and ρcc (−∞) = ρ(−∞)

cc .
If three pulses do not coincide in time, we can find a general

solution for the signal under the first-order approximation and
rotating-wave approximation (RWA) (see Appendix A),

S �
∑
a′

∑
a,a1

∑
b,b1

∑
c

(
π

2

)3 1

γ
|ρ(−∞)

bb |2℘ca′℘a′b℘ba℘ac℘a′c℘b1a′℘a1b1℘ca1 (EsEpEprσsσpσpr )2

× exp

{
−1

2
[σs(νs − ωab)]2 − 1

2
[σp(νp − ωa′b)]2 − 1

2
[σpr (νpr − ωac)]2

}

× exp

{
−1

2
[σs(νs − ωa1b1 )]2 − 1

2
[σp(νp − ωa′b1 )]2 − 1

2
[σpr (νpr − ωa1c)]2

}

× cos[ωaa1 (τpr − τs) − ωbb1 (τp − τs)]. (8)

Eq. (8) shows the generated field intensity for the Stokes-
pump-probe configuration associated with the first pathway
in Fig. 2(a). Later, we will use this result explicitly in the
simulation.

Next we introduce the Franck-Condon factors. The electric
dipole transition moment, ℘ν ′ν ′′ , between the vibrational level
ν ′ in the excited electronic state and the vibrational level ν ′′ in

the ground electronic state is shown as [29]

℘ν ′ν ′′ = μS(ν ′,ν ′′), (9)

where μ is the electronic transition moment, which is a con-
stant when the displacement of the nuclei from their equilib-
rium is relatively small, and S(ν ′,ν ′′) = ∫

ψ∗
ν ′(R)ψν ′′ (R)dτN ,

is the overlap integral between two vibrational eigenstates.

FIG. 3. (Color online) (a) The overlap integral, S (ν ′,ν ′′) between the vibrational levels in the ground state X 1�+
g , and excited state B 1�u.

The darker of the red (blue) color the larger is the positive (negative) number. The black, red, and blue lines show the center wavelengths of the
pump or probe, Stokes, and signal, respectively. The product of |S (ν ′,ν ′′) | and the Gaussian beam profile show the transition efficiencies for
the pump or probe field (b) and Stokes field (c).
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Here R is the internuclear distance and τN is the volume
element in terms of the nuclear coordinates [33]. The square
of this integral is the well-known Franck-Condon factor.
Figure 3(a) shows the calculated overlap integral, S(ν ′,ν ′′),
between the vibrational levels in the ground and excited states.
Figures 3(b) and 3(c) show the product of |S(ν ′,ν ′′)| and
Gaussian beam profile exp[− 1

2 ( t−τi

σi
)2] for the pump or probe

field and the Stokes field respectively. The pump or probe
wavelength is strongly resonant to a number of transitions. At
this point the Stokes wavelength plays an important role for
the specific selection of the underlining processes. It couples
primarily the 13–33 vibrational levels in the X state and 5–17
vibrational levels in the B state. For the FWM process we
should also notice that the 2–10 vibrational levels in the X state
is coupled to the 5–17 vibrational levels in the B state whereas
the 20–43 vibrational levels in the B state is coupled to the
13–33 vibrational levels in the X state strongly by the pump

or probe beam. The signal wavelength is not favored by the
Franck-Condon factors, so it is only weakly coupled to any res-
onant transition. Later we will discuss these transitions based
on the simulations, which include the Franck-Condon factors.

By considering the effect of the Franck-Condon factor in
detail as shown in Appendix B, we can simplify Eq. (8) as

S ∝
∑

a′,a,b,c

|℘ca′℘a′b℘ba℘ac|2{1 + cos[ωb+1,b(τp − τs) + π]

+ cos[ωa+1,a(τpr − τs) + π ] + cos[ωa+1,a(τpr − τs)

−ωb+1,b(τp − τs)]}. (10)

This simplified result of the signal intensity in the first pathway
in Fig. 2(a) will be used later to explain the results of the
experimental measurements.

Following the similar procedure, for the second pathway
[Fig. 2(b)], we can find the signal as

S �
∑
a′

∑
a,a1

∑
b,b1

∑
c

(
π

2

)3 1

γ

∣∣ρ(−∞)
bb

∣∣2
℘ca′℘a′b℘ba℘ac℘a′c℘b1a′℘a1b1℘ca1 (EsEpEprσsσpσpr )2

× exp

{
−1

2
[σs(νs − ωab)]2 − 1

2
[σp(νp − ωac)]2 − 1

2
[σpr (νpr − ωa′b)]2

}

× exp

{
−1

2
[σs(νs − ωa1b1 )]2 − 1

2
[σp(νp − ωa1c)]2 − 1

2
[σpr (νpr − ωa′b1 )]2

}

× cos[ωbb1 (τpr − τs) − ωaa1 (τp − τs)], (11)

and the corresponding simplified equation reads

S ∝
∑

a′,a,b,c

|℘ca′℘a′b℘ba℘ac|2{1 + cos[ωa+1,a(τp − τs) + π ]

+ cos[ωb+1,b(τpr − τs) + π ]

+ cos[ωb+1,b(τpr − τs) − ωa+1,a(τp − τs)]} (12)

Similar derivations are also used to find the signals for two
possible pathways in Figs. 2(c) and 2(d) in the pump-Stokes-
probe pulse sequence.

IV. RESULTS AND DISCUSSION

In this section we give interpretations for the ob-
served experimental data based on the results obtained
from the theoretical model presented in the previous section.
The parameters for the cesium molecule used to calculate the
corresponding vibrational frequency in Eq. (4) are taken from
Ref. [5], namely ωe = 42.02 cm−1 and ωeχe = 0.0819 cm−1

for the ground electronic state, X 1�+
g , while ωe = 34.33 cm−1

and ωeχe = 0.0800 cm−1 for the excited electronic state, B
1�u.

In Fig. 4, we present the experimental results in the
Stokes-pump-probe pulse sequence [Fig. 4(a)]. The Stokes
pulse arrives at time zero followed by the pump pulse after
a fixed delay at about 1.5 times the wave packet oscillating
period (0.86 ps) in the ground state, which is 1.5 × 0.86 ps.
The FWM signal is shown in Fig. 4(b). After integrating

over the spectral positions from the data in Fig. 4(b), the
oscillating dependence on the probe delay is clearly illustrated
in Fig. 4(d). The corresponding fast Fourier transform (FFT)
spectra is given in the insets [see Figs. 4(c) and 4(d)]. It
exhibits an oscillation dominated by the frequency 29.3 cm−1,
which is approximately the vibrational frequency in the excited
electronic state. One should notice that there are also negative
values of the probe pulse delays in both Figs. 4(b) and 4(d).
This corresponds to the case that the probe pulse arrives before
the pump pulse.

Simplified equations Eq. (10) and Eq. (12) for the signal
intensity under the conditions of the two possible pathways in
the Stokes-pump-probe pulse sequence enable us to interpret
the experimental results. First of all, let us carefully examine
Eq. (10) for the first pathway as in Fig. 2(a). The second term,
cos[ωb+1,b(τp − τs) + π ], includes the vibrational frequency
of the upper vibrational levels in the ground state, ωb+1,b,
and the time delay between the pump pulse and the Stokes
pulse. This is the same “laser control” term as discussed
in Ref. [16]. This term controls the amplitude of the signal
intensity depending on the time delays between the first two
pulses. Moreover, there is an extra “π” phase as a result of
the overlap integrals between different vibrational eigenstates.
This phase plays an important role, which results in the
strongest signal when the first two pulses’ time delays are
0.5Tg , 1.5Tg , 2.5Tg , and so forth. (Here, Tg is the cycling
period of the wave packet in the ground vibrational states.)
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FIG. 4. (Color online) (a) Stokes-pump-probe pulse sequence. (b) The experimental data for the spectrum of the FWM signal as a function
of probe delay. (c) The theoretical results for the signal versus probe delay. (d) The integrated spectrum from the experimental data in (b). The
insets in (c) and (d) show the corresponding FFT spectra.

More explicitly the occurrence of the extra π phase is a result of
the resonant conditions. In particular, the pump pulse at 760 nm
is resonant to the left-hand side (for the shorter internuclear
distance), while the Stokes pulse at 800 nm is resonant to the
right-hand side (for the longer internuclear distance) of the
potential curves (see Fig. 5).

The third term, cos[ωa+1,a(τpr − τs) + π], consists of the
vibrational frequency in the excited state, and the time delay
between the probe pulse and the Stokes pulse. Therefore, this
term contributes to the signal oscillation with respect to the
probe pulse delay.

Similarly, Eq. (12) for the second pathway as in Fig. 2(b)
shows another laser control term, cos[ωa+1,a(τp − τs) + π].
This time, it depends on the period defined by the vibra-
tional level spacing in the excited state. The next term,
cos[ωb+1,b(τpr − τs) + π ] is related to the vibrational fre-
quency in the ground state and determines the oscillation with
respect to the probe pulse delay.

Therefore, the timing of the pump and Stokes pulses
determine the combined contribution of the two pathways
in the overall process. Especially, one of the two pathways
could dominate over the other one. In the present experiment
with the particular pulse sequence as Fig. 4(a), the time delay
between the first two pulses is one and one half of the ground
state period (1.5 × 0.86 ps). This means that the first pathway
dominates over the second one. The signal intensity mainly
oscillates at a vibrational frequency of the excited state, which
is consistent with the experimental observation [Fig. 4(d)].

To further clarify the physics insight of this process [see,
Fig. 2(a)] for the pulse sequence given in Fig. 4 (a), we
demonstrate temporal evolution (within interval from zero to
1.5Tg) of the wave packet in Fig. 5. The Stokes pulse arrives
at time zero and generates the wave packet in the ground state,
X 1�+

g , and the wave packet in the excited state, B 1�u. Both
wave packets initially focus on the right side (with respect to
the minimum position of the potential energy curves) where the
Stokes pulse is resonant to the potential energy difference. As
time passes by, these two wave packets start to move back and
forth, with different cycling periods according to the different
vibrational frequencies in the ground and excited states. The
pump pulse arrives at 1.5Tg and is resonant to the left side of
the difference between interaction potentials. Thus, the pump
field can either pump the population up again [see the first
pathway in Fig. 2(a)], or “dump” the population down [see
the second pathway in Fig. 2(b)]. However at this particular
time, the wave packet in the excited state is spread out but the
wave packet in the ground state is localized to the left side.
Therefore, the first pathway is the dominant process in this
case.

So far, we have shown how simple results, Eqs. (10) and (12)
can easily interpret our experimental results. We also perform
numerical simulations to solve the general equations (8) and
(11). Figure 4(c) shows the numerical results of the signal
intensity versus the probe pulse delay for the pulse sequence
as shown in Fig. 4(a). The numerical result agrees well with the
experimental result in Fig. 4(d). It shows that the oscillation of
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FIG. 5. (Color online) Temporal evolution of the wave packets created in the excited and ground states in Cs2 molecules. The Stokes pulse
arrives at time zero and the pump pulse arrives later at 1.5Tg for pulse sequence given in Fig. 4(a).

the signal intensity has the same frequency with the vibrational
frequency in the excited state.

Next we consider the case of the pump-Stokes-probe
configuration as in Fig. 6(a). The Stokes pulse is delayed at a
fixed value (1.5Tg) and the probe delay is varied with respect
to the pump arrival time. The experimental results are shown
in Figs. 6(b) and 6(d), where the signal exhibits the oscillation
with a frequency (∼29.3 cm−1) associated with the excited
state. Analogous analysis as for the Stokes-pump-probe
configuration can be done in this case to elucidate the observed
data. Similarly, there are two possible pathways as shown in
Figs. 2(c) and 2(d). For the pathway in Fig. 2(c), the time
delay between the first two pulses is a laser control parameter,
together with the ground-state vibrational frequency. However,
the oscillation frequency is determined by the time delay

between the probe and pump pulses together with the excited
state vibrational frequency. Theoretical (numerical) simulation
shows the signal oscillation with the excited-state vibrational
frequency [see Fig. 6(c)].

Moreover, we also measured the FWM signal where the
pump and probe pulses overlap in time and the Stokes pulse is
delayed. Figure 7 shows the experimental measurement and the
energy level diagram for Cs atoms. The experimental results
exhibit an oscillating signal with the frequency of 21 cm−1. The
two-photon process for the pump and probe beams is resonant
with the transition between 6s and 7d levels in Cs atoms. Thus,
coherence between these two levels is prepared. A delayed
Stokes field then triggers the generation of the FWM signal in
the Cs atoms. This FWM signal is relatively strong compared
to that for Cs2 molecules as we mentioned earlier that there
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FIG. 6. (Color online) (a) Pump-Stokes-probe pulse sequence. (b) The experimental data for the spectrum of the FWM signal as a function
of probe delay. (c) The theoretical results for the signal versus probe delay. (d) The integrated spectrum from the experimental data in (b). The
insets in (c) and (d) show the corresponding FFT spectra.

are much more Cs atoms rather than Cs2 molecules in the cell.
We notice that the degeneracy of the 7d level in Cs atoms and
the energy difference between levels 7d 2D5/2 and 7d 2D3/2

is 20.92 cm−1. The FWM signal is a result of the beating at
frequency of 20.92 cm−1 due to the splitting of 7d energy
level.

Let us consider the FWM signal in Cs2 molecules when the
pump and probe pulses are not overlapped. A two-dimensional
measurement result is shown in Fig. 8(a). The measurement is
performed when varying delays of both the Stokes and probe
pulses separately. The measurement exhibits a periodic pattern.

FIG. 7. (Color online) Experimental measurement where the
pump and probe beams are overlapped in time and the Stokes pulse
is delayed. Inset: energy level diagram for Cs atoms.

It reveals the complex wave-packet motions interacting with
the laser pulses via all the possible pathways in Cs2 molecules.
The dark red area in the middle of the measured pattern
corresponds to the overlap of the pump and probe pulses.
In this area, two-photon absorption process in the Cs atom
results in a strong FWM signal as we discussed above. The
simulation based on the above mentioned theory [Eqs. (8) and
(11) for the Stokes-pump-probe pulse sequence and analogous
equations for the pump-Stokes-probe pulse sequence] in the
Cs2 molecule is performed [see Fig. 8(b)]. Note that in the
simulation, the two-photon absorption process for the Cs atom
is not included. Such two-photon absorption process occurs
when the pump and probe pulses are overlapped (i.e., τp = τpr )
as discussed in the previous paragraph and for the pump-probe-
Stokes sequence (i.e., τp < τpr < τs). (In the latter case, the
delayed probe pulse is overlapped with the pump pulse’s weak
oscillating tail, which is created by the modulation between the
pump pulse and the Cs2 molecule.) The periodic pattern is also
obtained in the theoretical two-dimensional plot. It shows the
interaction between the laser pulses and the Cs2 molecules
under all the possible pathways. As seen from Figs. 8(a)
and 8(b), the theoretical and experimental data are consistent
despite a little deviation between the two. This is possibly
due to the approximations (such as first-order approximation)
made in the present theory, which does reveal the most
dominant processes observed in the experiment. However, one
may improve the theoretical model by including more details
to further match the experimental data. For example, the use of
slightly chirped pulses in the experiment, which may change
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FIG. 8. (Color online) Two-dimensional FWM signal as a function of both the Stokes and probe delays. (a) Experimental measurements.
(b) Theoretical results.

the distribution of the spots in the pattern, is not considered in
the theoretical model.

V. CONCLUSION

We study the wave-packet dynamics in cesium dimers both
experimentally and theoretically. In the experiment we use
the coherent anti-Stokes Raman scattering spectroscopic tech-
nique. The temporal coherent control is achieved by arranging
either the Stokes-pump-probe or pump-Stokes-probe timing
sequences. The CARS signal exhibits different oscillations
with specific periods determined by the wave packets’ cycle
motion induced either in the ground or excited states of Cs2

molecules by varying the probe delay. Moreover, the CARS
signal is also recorded by scanning both delays of the Stokes
and probe pulses independently and the measured data display
the two-dimensional periodic pattern.

An appropriate theoretical model based on the density
matrix formalism is developed to explain the experimental
results. The obtained approximate solutions enable us to reveal
the physical mechanism for the complex processes that take
place during the experiment. Depending on timing sequence
of the input pulses we find out that at least four different
types of coherent Raman scattering processes play crucial role
in the overall wave-packet dynamics in cesium molecules.
We perform the numerical simulations and show that the
theoretical and experimental results are consistent.

The present coherent temporal control experimental tech-
nique can be used to create and manipulate the quantum
interference between wave packets produced in different
electronic states of cesium dimers whereas the present theory
can presumably be extended to various molecules.
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APPENDIX A

For the first pathway in the Stokes-pump-probe pulse
sequence in Fig. 2(a), the Stokes pulse first creates the
coherence given by

ρab(t) � i

√
π

2
ρ

(−∞)
bb ℘abEsσse

− 1
2 [σs (νs−ωab)]2

e−iωab(t−τs )

× eiks ·xθ (t − τs) (A1)

under the first-order approximation. The pump pulse then
interacts with the sample and induces the coherence given
by

ρa′a(t) � π

2
ρ

(−∞)
bb ℘a′b℘baEsEpσsσpe− 1

2 [σs (νs−ωab)]2

× e− 1
2 [σp(νp−ωa′b)]2 × eiωab(τp−τs )e−iωa′a (t−τp)

× ei(kp−ks )·xθ (t − τp). (A2)

At last the probe pulse creates the coherence given by

ρa′c(t) � −i

(
π

2

)3/2

ρ
(−∞)
bb ℘a′b℘ba℘acEsEpEprσsσpσpre

− 1
2 [σs (νs−ωab)]2

e− 1
2 [σp(νp−ωa′b)]2

e− 1
2 [σpr (νpr−ωac)]2

×eiωab(τp−τs )e−iωa′a (τpr−τp)e−iωa′c(t−τpr )ei(kp−ks+kpr )·xθ (t − τpr ). (A3)

Here, in the resulting coherence term, ρa′c, the phase-matching condition, kSignal = kp − ks + kpr is satisfied. Before calculating
the signal intensity, let us introduce the decay rate (γ ∼ 1 ns−1) into the resulting coherence ρa′c equation by hand and rewrite
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Eq. (A3) as

ρa′c(t) � −i

(
π

2

)3/2

ρ
(−∞)
bb ℘a′b℘ba℘acEsEpEprσsσpσpre

− 1
2 [σs (νs−ωab)]2

e− 1
2 [σp(νp−ωa′b)]2

e− 1
2 [σpr (νpr−ωac)]2

×e−iωa′ (τpr−τp)eiωa (τpr−τs )e−iωb(τp−τs )e−γ (t−τpr )e−iωa′c(t−τpr )ei(kp−ks+kpr )·xθ (t − τpr ). (A4)

Under the RWA approximation, we plug this result into Eq. (7) to find the signal intensity as

S �
∑
a′,a′

1

∑
a,a1

∑
b,b1

∑
c,c1

(
π

2

)3

|ρ(−∞)
bb |2℘ca′℘a′b℘ba℘ac℘a′

1c1℘b1a
′
1
℘a1b1℘c1a1 (EsEpEprσsσpσpr )2

×e− 1
2 [σs (νs−ωab)]2

e− 1
2 [σp(νp−ωa′b)]2

e− 1
2 [σpr (νpr−ωac)]2×e− 1

2 [σs (νs−ωa1b1 )]2
e
− 1

2 [σp(νp−ωa′
1b1

)]2

e− 1
2 [σpr (νpr−ωa1c1 )]2

×e
−iωa′a′

1
(τpr−τp)

eiωaa1 (τpr−τs )e−iωbb1 (τp−τs )
∫ ∞

τpr

e−2γ (t−τpr )e
−i(ωa′c−ωa′

1c1
)(t−τpr )

dt + c.c.. (A5)

The integral in Eq. (A5) gives

∫ ∞

τpr

e−2γ (t−τpr )e
−i(ωa′c−ωa′

1c1
)(t−τpr )

dt = 1

2γ + i
(
ωa′c − ωa′

1c1

) ≈
⎧⎨
⎩

1
2γ

ωa′c = ωa′
1c1

1

i

(
ωa′c−ωa′

1c1

) ωa′c �= ωa′
1c1

. (A6)

Under the underdamped condition, 2γ 
 |ωa′c − ωa′
1c1 |. The contribution from the term 1

2γ
is dominating, so it is reasonable to

drop the small terms with a′ �= a′
1 or c �= c1, and the signal intensity reads as Eq. (8).

APPENDIX B

In this Appendix, we simplify Eq. (8) under some approximations. Since the pulse width is finite, it is reasonable to
consider the first four main contributions from the near-resonant vibrational levels in Eq. (8). It gives

S ∝
∑

a′,a,b,c

{℘ca′℘a′b℘ba℘ac℘a′c℘ba′℘ab℘ca+℘ca′℘a′b℘ba℘ac℘a′c℘b+1,a′℘a,b+1℘ca cos[ωb+1,b(τp − τs)]

+℘ca′℘a′b℘ba℘ac℘a′c℘ba′℘a+1,b℘c,a+1 cos[ωa+1,a(τpr − τs)]

+℘ca′℘a′b℘ba℘ac℘a′c℘b+1,a′℘a+1,b+1℘c,a+1 cos[ωa+1,a(τpr − τs) − ωb+1,b(τp − τs)]}. (B1)

From Fig. 3(a), we notice that the pump and probe fields couple the (ν ′,ν ′′) transitions located on the upper lines, which are
composed by dark red and dark blue dots, while the Stokes field couples the (ν ′,ν ′′) transition located on the lower lines composed
by dark orange dots. After taking care of the sign of each integral in Fig. 3(a), we can make the following approximations for
those large dipole moments in Eq. (B1):

℘ab � ℘a+1,b � ℘a,b+1 � ℘a+1,b+1, ℘ca � −℘c,a+1, ℘ba′ � −℘b+1,a′ . (B2)

Under these approximations, we obtain Eq. (10).

[1] Femtochemistry and Femtobiology: Ultrafast Events in
Molecular Science, James T. Hynes (Elsevier, Amsterdam,
2004).

[2] M. Dantus and V. Lozovoy, Chem. Rev. 104, 1813 (2004).
[3] A. H. Zewail, Science 242, 1645 (1988).
[4] G. Rodriguez and J. G. Eden, Chem. Phys. Lett. 205, 371 (1993).
[5] G. Rodriguez, P. C. John, and J. G. Eden, J. Chem. Phys. 103,

10473 (1995).
[6] A. L. Oldenburg, P. C. John, and J. G. Eden, J. Chem. Phys. 113,

11009 (2000).
[7] T. Siebert, M. Schmitt, A. Vierheilig, G. Flachenecker, V. Engel,

A. Materny, and W. Kiefer, J. Raman Spectrosc. 31, 25 (2000).

[8] A. Scaria, V. Namboodiri, J. Konradi, and A. Materny, J. Chem.
Phys. 127, 144305 (2007).

[9] J. Liebers, A. Scaria, A. Materny, and U. Kleinekathöfer, J.
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