5,830 research outputs found

    Effects of Defects on Friction for a Xe Film Sliding on Ag(111)

    Full text link
    The effects of a step defect and a random array of point defects (such as vacancies or substitutional impurities) on the force of friction acting on a xenon monolayer film as it slides on a silver (111) substrate are studied by molecular dynamic simulations and compared with the results of lowest order perturbation theory in the substrate corrugation potential. For the case of a step, the magnitude and velocity dependence of the friction force are strongly dependent on the direction of sliding respect to the step and the corrugation strength. When the applied force F is perpendicular to the step, the film is pinned forF less than a critical force Fc. Motion of the film along the step, however, is not pinned. Fluctuations in the sliding velocity in time provide evidence of both stick-slip motion and thermally activated creep. Simulations done with a substrate containing a 5 percent concentration of random point defects for various directions of the applied force show that the film is pinned for the force below a critical value. The critical force, however, is still much lower than the effective inertial force exerted on the film by the oscillations of the substrate in experiments done with a quartz crystal microbalance (QCM). Lowest order perturbation theory in the substrate potential is shown to give results consistent with the simulations, and it is used to give a physical picture of what could be expected for real surfaces which contain many defects.Comment: 13 pages, 17 figures, latex plus postscript files for figure

    Blogging in the physics classroom: A research-based approach to shaping students' attitudes towards physics

    Full text link
    Even though there has been a tremendous amount of research done in how to help students learn physics, students are still coming away missing a crucial piece of the puzzle: why bother with physics? Students learn fundamental laws and how to calculate, but come out of a general physics course without a deep understanding of how physics has transformed the world around them. In other words, they get the "how" but not the "why". Studies have shown that students leave introductory physics courses almost universally with decreased expectations and with a more negative attitude. This paper will detail an experiment to address this problem: a course weblog or "blog" which discusses real-world applications of physics and engages students in discussion and thinking outside of class. Specifically, students' attitudes towards the value of physics and its applicability to the real-world were probed using a 26-question Likert scale survey over the course of four semesters in an introductory physics course at a comprehensive Jesuit university. We found that students who did not participate in the blog study generally exhibited a deterioration in attitude towards physics as seen previously. However, students who read, commented, and were involved with the blog maintained their initially positive attitudes towards physics. Student response to the blog was overwhelmingly positive, with students claiming that the blog made the things we studied in the classroom come alive for them and seem much more relevant.Comment: 20 pages, 6 figure

    Anomalous pinning behavior in an incommensurate two-chain model of friction

    Full text link
    Pinning phenomena in an incommensurate two-chain model of friction are studied numerically. The pinning effect due to the breaking of analyticity exists in the present model. The pinning behavior is, however, quite different from that for the breaking of analyticity state of the Frenkel-Kontorova model. When the elasticity of chains or the strength of interchain interaction is changed, pinning force and maximum static frictional force show anomalously complicated behavior accompanied by a successive phase transition and they vanish completely under certain conditions.Comment: RevTex, 9 pages, 19 figures, to appear in Phys. Rev. B58 No.23(1998

    Strongly Temperature Dependent Sliding Friction for a Superconducting Interface

    Full text link
    A sudden drop in mechanical friction, between an adsorbed nitrogen monolayer and a lead substrate, occurs when the lead passes through the superconducting transition temperature. We attribute this effect to a sudden drop at the superconducting transition temperature of the substrate Ohmic heating. The Ohmic heating is due to the electronic screening current that results from the sliding adsorbed film.Comment: Revte

    Negative Refraction and Left-handed electromagnetism in Microwave Photonic Crystals

    Full text link
    We demonstrate negative refraction of microwaves in metallic photonic crystals. The spectral response of the photonic crystal, which manifests both positive and negative refraction, is in complete agreement with band-structure calculations and numerical simulations. The negative refraction observed corresponds to left-handed electromagnetism and arises due to the dispersion characteristics of waves in a periodic medium. This mechanism for negative refraction is different from that in metamaterials.Comment: 13 pages, 4 figure

    Static Friction between Elastic Solids due to Random Asperities

    Full text link
    Several workers have established that the Larkin domains for two three dimensional nonmetallic elastic solids in contact with each other at a disordered interface are enormously large. This implies that there should be negligible static friction per unit area in the macroscopic solid limit. The present work argues that the fluctuations in the heights of the random asperities at the interface that occur in the Greenwood-Williamson model can account for static friction.Comment: Contains some improvements in the treatment of the subjec

    Static and Dry Friction due to Multiscale Surface Roughness

    Full text link
    It is shown on the basis of scaling arguments that a disordered interface between two elastic solids will quite generally exhibit static and "dry friction" (i.e., kinetic friction which does not vanish as the sliding velocity approaches zero), because of Tomlinson model instabilities that occur for small length scale asperities. This provides a possible explanation for why static and "dry" friction are virtually always observed, and superlubricity almost never occurs

    Self-Similarity and Localization

    Full text link
    The localized eigenstates of the Harper equation exhibit universal self-similar fluctuations once the exponentially decaying part of a wave function is factorized out. For a fixed quantum state, we show that the whole localized phase is characterized by a single strong coupling fixed point of the renormalization equations. This fixed point also describes the generalized Harper model with next nearest neighbor interaction below a certain threshold. Above the threshold, the fluctuations in the generalized Harper model are described by a strange invariant set of the renormalization equations.Comment: 4 pages, RevTeX, 2 figures include

    Collision and symmetry-breaking in the transition to strange nonchaotic attractors

    Get PDF
    Strange nonchaotic attractors (SNAs) can be created due to the collision of an invariant curve with itself. This novel ``homoclinic'' transition to SNAs occurs in quasiperiodically driven maps which derive from the discrete Schr\"odinger equation for a particle in a quasiperiodic potential. In the classical dynamics, there is a transition from torus attractors to SNAs, which, in the quantum system is manifest as the localization transition. This equivalence provides new insights into a variety of properties of SNAs, including its fractal measure. Further, there is a {\it symmetry breaking} associated with the creation of SNAs which rigorously shows that the Lyapunov exponent is nonpositive. By considering other related driven iterative mappings, we show that these characteristics associated with the the appearance of SNA are robust and occur in a large class of systems.Comment: To be appear in Physical Review Letter

    Probing magnetic fields with multi-frequency polarized synchrotron emission

    Get PDF
    We investigate the problem of probing the local spatial structure of the magnetic field of the interstellar medium using multi-frequency polarized maps of the synchrotron emission at radio wavelengths. We focus in this paper on the three-dimensional reconstruction of the largest scales of the magnetic field, relying on the internal depolarization (due to differential Faraday rotation) of the emitting medium as a function of electromagnetic frequency. We argue that multi-band spectroscopy in the radio wavelengths, developed in the context of high-redshift extragalactic HI lines, can be a very useful probe of the 3D magnetic field structure of our Galaxy when combined with a Maximum A Posteriori reconstruction technique. When starting from a fair approximation of the magnetic field, we are able to recover the true one by using a linearized version of the corresponding inverse problem. The spectral analysis of this problem allows us to specify the best sampling strategy in electromagnetic frequency and predicts a spatially anisotropic distribution of posterior errors. The reconstruction method is illustrated for reference fields extracted from realistic magneto-hydrodynamical simulations
    corecore