250 research outputs found

    Microscopic theory of the activated behavior of the quantized Hall effect

    Full text link
    The thermally activated behavior of the gate defined narrow Hall bars is studied by analyzing the existence of the incompressible strips within a Hartree-type approximation. We perform self-consistent calculations considering the linear response regime, supported by a local conductivity model. We investigate the variation of the activation energy depending on the width of samples in the range of 2d[110]μm2d\sim [1-10] \mu m. We show that the largest activation energy of high-mobility narrow samples, is at the low field edge of Hall filling factor 2 plateau (exceeding half of the cyclotron energy), whereas for relatively wide samples the higher activation energy is obtained at the high field edge of Hall plateau. In contrast to the single-particle theories based on the localization of electronic states, we found that the activation energy is almost independent of the properties of the density of states.Comment: 8 pages, 4 figure

    Evanescent incompressible strips as origin of the observed Hall resistance overshoot

    Full text link
    In this work we provide a systematic explanation to the unusual non-monotonic behavior of the Hall resistance observed at two-dimensional electron systems. We use a semi-analytical model based on the interaction theory of the integer quantized Hall effect to investigate the existence of the anomalous, \emph{i.e} overshoot, Hall resistance RHR_{H}. The observation of the overshoot resistance at low magnetic field edge of the plateaus is elucidated by means of overlapping evanescent incompressible strips, formed due to strong magnetic fields and interactions. Utilizing a self-consistent numerical scheme we also show that, if the magnetic field is decreased the RHR_{H} decreases to its expected value. The effects of the sample width, temperature, disorder strength and magnetic field on the overshoot peaks are investigated in detail. Based on our findings, we predict a controllable procedure to manipulate the maxima of the peaks, which can be tested experimentally. Our model does not depend on specific and intrinsic properties of the material, provided that a single particle gap exists.Comment: A theoretical follow-up paper of arXiv:1007.258

    Interaction mediated asymmetries of the quantized Hall effect

    Full text link
    Experimental and theoretical investigations on the integer quantized Hall effect in gate defined narrow Hall bars are presented. At low electron mobility the classical (high temperature) Hall resistance line RH(B) cuts through the center of all Hall plateaus. In contrast, for our high mobility samples the intersection point, at even filling factors \nu = 2; 4 ..., is clearly shifted towards larger magnetic fields B. This asymmetry is in good agreement with predictions of the screening theory, i. e. taking Coulomb interaction into account. The observed effect is directly related to the formation of incompressible strips in the Hall bar. The spin-split plateau at \nu= 1 is found to be almost symmetric regardless of the mobility. We explain this within the so-called effective g-model.Comment: 4 pages, 3 figure

    Quantum Hall Resistance Overshoot in 2-Dimensional Electron Gases - Theory and Experiment

    Get PDF
    We present a systematical experimental investigation of an unusual transport phenomenon observed in two dimensional electron gases in Si/SiGe heterostructures under integer quantum Hall effect (IQHE) conditions. This phenomenon emerges under specific experimental conditions and in different material systems. It is commonly referred to as Hall resistance overshoot, however, lacks a consistent explanation so far. Based on our experimental findings we are able to develop a model that accounts for all of our observations in the framework of a screening theory for the IQHE. Within this model the origin of the overshoot is attributed to a transport regime where current is confined to co-existing evanescent incompressible strips of different filling factors.Comment: 26 pages, 10 figure

    Acaricidal activity of Foeniculum vulgare against Rhipicephalus annulatus is mainly dependent on its constituent from trans-anethone

    Get PDF
    Globally, the economic losses due to hard ticks infestation and the control of the associated diseases have been calculated at USD $13.9-18.7 billion per year. The economic impact is related to its direct damage to the skins, blood loss, anemia, severe immunological reactions and indirect losses that related to the effects of hemoparasites, cost of treatment for clinical cases and expenses incurred in the control of ticks. The current study evaluated the acaricidal activities of fennel Foeniculum vulgare essential oil and its main components; trans-anethole and fenchone; against R. annulatus. GC-MS analysis revealed that this oil contained 16 components representing 99.9% of the total identified compounds with E-anethole being the predominant component(64.29%), followed by fenchone (9.94%). The fennel oil and trans-anethole showed significant acaricidal activities. The LC50 of the fennel oil was attained at concentrations of 12.96% for adult ticks and 1.75% for tick larvae meanwhile the LC50 of trans-anethole was reached at concentrations of 2.36% for adult tick and 0.56% for tick larvae. On the contrary, fenchone showed no any significant adulticidal activities and its LC50 attained at a concentration of 9.11% for tick larvae. Regarding repellence activities, trans-anethole achieved 100% repellency at the concentration of 10% while fennel showed 86% repellency at the same concentration. Fenchone showed no repellency effect. Treatment of larvae with fennel, trans-anethole, and fenchone LC50 concentrations significantly inhibited the acetylcholinesterase activity. Meanwhile, glutathione s-transferase activity was significantly decreased in fennel treated larvae but no significant effect was found in the larvae of trans-anethole and fenchone groups. These results indicate that the acaricide effect of fennel oil may attributed to its high content of trans-anethole. This was supported by potent adulticidal, larvicidal, and repellency effects of trans-anethole against Rhipeciphalus annulatus tick and therefore it could be included in the list of acaricide of plant origin

    The visibility of IQHE at sharp edges: Experimental proposals based on interactions and edge electrostatics

    Full text link
    The influence of the incompressible strips on the integer quantized Hall effect (IQHE) is investigated, considering a cleaved-edge overgrown (CEO) sample as an experimentally realizable sharp edge system. We propose a set of experiments to clarify the distinction between the large-sample limit when bulk disorder defines the IQHE plateau width and the small-sample limit smaller than the disorder correlation length, when self-consistent edge electrostatics define the IQHE plateau width. The large-sample or bulk QH regime is described by the usual localization picture, whereas the small-sample or edge regime is discussed within the compressible/incompressible strips picture, known as the screening theory of QH edges. Utilizing the unusually sharp edge profiles of the CEO samples, a Hall bar design is proposed to manipulate the edge potential profile from smooth to extremely sharp. By making use of a side-gate perpendicular to the two dimensional electron system, it is shown that the plateau widths can be changed or even eliminated altogether. Hence, the visibility of IQHE is strongly influenced when adjusting the edge potential profile and/or changing the dc current direction under high currents in the non-linear transport regime. As a second investigation, we consider two different types of ohmic contacts, namely highly transmitting (ideal) and highly reflecting (non-ideal) contacts. We show that if the injection contacts are non-ideal, however still ohmic, it is possible to measure directly the non-quantized transport taking place at the bulk of the CEO samples. The results of the experiments we propose will clarify the influence of the edge potential profile and the quality of the contacts, under quantized Hall conditions.Comment: Substantially revised version of manuscript arXiv:0906.3796v1, including new figures et

    Theoretical investigation of InAs/GaSb type-II pin superlattice infrared detector in the mid wavelength infrared range

    Get PDF
    In this study, we present the theoretical investigation of type-II InAs/GaSb superlattice p-i-n detector. Kronig-Penney and envelope function approximation is used to calculate band gap energy and superlattice minibands. Variational method is also used to calculate exciton binding energies. Our results show that carriers overlap increases at GaSb/InAs interface on the higher energy side while it decreases at InAs/GaSb interface on the lower energy side with increasing reverse bias due to shifting the hole wavefunction toward to the GaSb/InAs interface decisively. Binding energies increase with increasing electric field due to overall overlap of electron and hole wave functions at the both interfaces in contrast with type I superlattices. This predicts that optical absorption is enhanced with increasing electric field. © 2013 American Institute of Physics

    Natural occurrence of Cucumber mosaic virus infecting water mint (Mentha aquatica) in Antalya and Konya, Turkey

    Get PDF
    A virus causing a disease in mint (the aromatic and culinary plant) has recently become a problem in the Taurus Mountains, a mountain range in the Mediterranean region of Turkey. To detect the virus and investigate its distribution in the region, mint leaf samples were collected from the vicinity of spring areas in the plateaus of Antalya and Konya in 2009. It was found that Cucumber mosaic virus (CMV) was detected in 27.08% of symptomatic samples tested by DAS-ELISA. To the best of our knowledge, this is the first report of CMV on mint plants in this region of Turkey
    corecore