5,239 research outputs found

    Ferromagnetic phase transition for the spanning-forest model (q \to 0 limit of the Potts model) in three or more dimensions

    Get PDF
    We present Monte Carlo simulations of the spanning-forest model (q \to 0 limit of the ferromagnetic Potts model) in spatial dimensions d=3,4,5. We show that, in contrast to the two-dimensional case, the model has a "ferromagnetic" second-order phase transition at a finite positive value w_c. We present numerical estimates of w_c and of the thermal and magnetic critical exponents. We conjecture that the upper critical dimension is 6.Comment: LaTex2e, 4 pages; includes 6 Postscript figures; Version 2 has expanded title as published in PR

    Dynamic critical behavior of the Chayes-Machta-Swendsen-Wang algorithm

    Get PDF
    We study the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts model to noninteger q, in two and three spatial dimensions, by Monte Carlo simulation. We show that the Li-Sokal bound z \ge \alpha/\nu is close to but probably not sharp in d=2, and is far from sharp in d=3, for all q. The conjecture z \ge \beta/\nu is false (for some values of q) in both d=2 and d=3.Comment: Revtex4, 4 pages including 4 figure

    Grassmann Integral Representation for Spanning Hyperforests

    Full text link
    Given a hypergraph G, we introduce a Grassmann algebra over the vertex set, and show that a class of Grassmann integrals permits an expansion in terms of spanning hyperforests. Special cases provide the generating functions for rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All these results are generalizations of Kirchhoff's matrix-tree theorem. Furthermore, we show that the class of integrals describing unrooted spanning (hyper)forests is induced by a theory with an underlying OSP(1|2) supersymmetry.Comment: 50 pages, it uses some latex macros. Accepted for publication on J. Phys.

    Dynamic relaxation of a liquid cavity under amorphous boundary conditions

    Get PDF
    The growth of cooperatively rearranging regions was invoked long ago by Adam and Gibbs to explain the slowing down of glass-forming liquids. The lack of knowledge about the nature of the growing order, though, complicates the definition of an appropriate correlation function. One option is the point-to-set correlation function, which measures the spatial span of the influence of amorphous boundary conditions on a confined system. By using a swap Monte Carlo algorithm we measure the equilibration time of a liquid droplet bounded by amorphous boundary conditions in a model glass-former at low temperature, and we show that the cavity relaxation time increases with the size of the droplet, saturating to the bulk value when the droplet outgrows the point-to-set correlation length. This fact supports the idea that the point-to-set correlation length is the natural size of the cooperatively rearranging regions. On the other hand, the cavity relaxation time computed by a standard, nonswap dynamics, has the opposite behavior, showing a very steep increase when the cavity size is decreased. We try to reconcile this difference by discussing the possible hybridization between MCT and activated processes, and by introducing a new kind of amorphous boundary conditions, inspired by the concept of frozen external state as an alternative to the commonly used frozen external configuration.Comment: Completely rewritten version. After the first submission it was realized that swap and nonswap dynamics results are qualitatively different. This version reports the results of both dynamics and discusses the different behaviors. 17 pages, 18 figure

    Cluster simulations of loop models on two-dimensional lattices

    Get PDF
    We develop cluster algorithms for a broad class of loop models on two-dimensional lattices, including several standard O(n) loop models at n \ge 1. We show that our algorithm has little or no critical slowing-down when 1 \le n \le 2. We use this algorithm to investigate the honeycomb-lattice O(n) loop model, for which we determine several new critical exponents, and a square-lattice O(n) loop model, for which we obtain new information on the phase diagram.Comment: LaTex2e, 4 pages; includes 1 table and 2 figures. Totally rewritten in version 2, with new theory and new data. Version 3 as published in PR

    Equilibrium fluid-solid coexistence of hard spheres

    Get PDF
    We present a tethered Monte Carlo simulation of the crystallization of hard spheres. Our method boosts the traditional umbrella sampling to the point of making practical the study of constrained Gibb's free energies depending on several crystalline order-parameters. We obtain high-accuracy estimates of the fluid-crystal coexistence pressure for up to 2916 particles (enough to accommodate fluid-solid interfaces). We are able to extrapolate to infinite volume the coexistence pressure (p_{co}=11.5727(10) k_B T/\sigma^3) and the interfacial free energy (\gamma_{100}=0.636(11) k_B T/\sigma^2).Comment: 6 pages, 4 pdf figures. Version to be published in PRL. Appendices contain Supplemental Materia

    Completeness of the classical 2D Ising model and universal quantum computation

    Full text link
    We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins w.r.t the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.Comment: 4 pages, 1 figure. Minor change
    • …
    corecore