16 research outputs found

    New insights into the photocatalytic endocrine disruptors dimethyl phathalate esters degradation by UV/MWCNTs-TiO2 nanocomposites

    Get PDF
    Dimethyl phthalate esters (DMPEs) are considered to be endocrine disruptors and environmentally hazardous materials in plastic industries wastewater because of its low solubility and accumulated persistent toxicity. In the present study, MWCNTs/TiO2 nanocomposites were fabricated by modified sol-gel technique using titanium isopropoxide as titanium oxide sources and purified MWCNTs, to degrade DMPEs through photocatalysis using UV irradiation. The effect of MWCNTs loading (3–15 wt %) on TiO2 and the photocatalytic performance of DMPEs in aqueous solution by UV/MWCNTs/TiO2 nanocomposites were investigated. For experiments conducted with the same illumination time, the photodegradration of DMPEs was enhanced with increasing the MWCNTs contents from 3 to 10 wt % and then decreased with a further enhancement to 15 wt %. Basically, the presence of MWCNTs in the nanocomposites can lead to the decrease in the relative amount of TiO2 in the photocatalyst and then to the decrease of the photogenerated carriers. This is because the same amount of photocatalyst was added for the photoreaction, and hence, the photodegradation of DMPEs decreases especially for the nanocomposites containing MWCNTs exceed than 10 wt %. The presence of functional group (COOH) on the MWCNTs surface would help the achievement of direct chemical bonding between MWCNTs and the TiO2 nanoparticles, resulting in the synergistic effect of MWCNTs and TiO2 where the flow of photogenerated electrons in the space charge region to the MWCNTs surface. A method based on high-performance liquid chromatography (HPLC) was developed to study the degraded DMPEs samples produced after exposure to UV light

    Essential Oil Content of the Rhizome of Curcuma purpurascens

    Get PDF
    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome’s oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Photocatalytic degradation mechanisms of dimethyl phthalate esters by MWCNTs-anatase TiO2 nanocomposites using the UHPLC/Orbitrap/MS technique

    No full text
    Dimethyl phthalate esters (DMPEs) have been identified as endocrine disrupting plastisizers and emerging contaminants which can be released readily upon exposure to the environment. In this study, MWCNTs/TiO2 nanocomposites, which possess the potential application for the photocatalytic degradation of DMPEs under UV irradiation, were prepared via simple one-pot sol-gel reaction using titanium isopropoxide (TTIP) as titania precursor and multiwalled carbon nanotubes (MWCNTs). The MWCNTs/TiO2 nanocomposites was calcined in air for 2 h at the temperatures ranging from 350 to 750 °C. As a result, the MWCNTs/TiO2 nanocomposites synthesized at calcination temperature of 450 °C demonstrated the highest photodegradation efficiency of 97% after 180 min UV irradiation and its degraded products were evaluated using the ultra high performance liquid chromatography (UHPLC) coupled with a high resolution (HR) Orbitrap mass spectrometry (MS). A primary degradation mechanism was proposed and it was noteworthy that some new intermediates were discovered and reported. This work has developed a simple method for qualitative determination of DMPEs based on HPLC with UV detection

    Photocatalytic degradation mechanisms of dimethyl phthalate esters by MWCNTs-anatase TiO2 nanocomposites using the UHPLC/Orbitrap/MS technique

    No full text
    Dimethyl phthalate esters (DMPEs) have been identified as endocrine disrupting plastisizers and emerging contaminants which can be released readily upon exposure to the environment. In this study, MWCNTs/TiO2 nanocomposites, which possess the potential application for the photocatalytic degradation of DMPEs under UV irradiation, were prepared via simple one-pot sol-gel reaction using titanium isopropoxide (TTIP) as titania precursor and multiwalled carbon nanotubes (MWCNTs). The MWCNTs/TiO2 nanocomposites was calcined in air for 2 h at the temperatures ranging from 350 to 750 °C. As a result, the MWCNTs/TiO2 nanocomposites synthesized at calcination temperature of 450 °C demonstrated the highest photodegradation efficiency of 97% after 180 min UV irradiation and its degraded products were evaluated using the ultra high performance liquid chromatography (UHPLC) coupled with a high resolution (HR) Orbitrap mass spectrometry (MS). A primary degradation mechanism was proposed and it was noteworthy that some new intermediates were discovered and reported. This work has developed a simple method for qualitative determination of DMPEs based on HPLC with UV detection. © 2019 The Society of Powder Technology Japa

    6-shogaol, a neuroactive compound of ginger (jahe gajah) induced neuritogenic activity via NGF responsive pathways in PC-12 cells

    No full text
    Abstract Background Ginger is a popular spice and food preservative. The rhizomes of the common ginger have been used as traditional medicine to treat various ailments. 6-Shogaol, a pungent compound isolated from the rhizomes of jahe gajah (Zingiber officinale var officinale) has shown numerous pharmacological activities, including neuroprotective and anti-neuroinflammatory activities. The aim of this study was to investigate the potential of 6-shogaol to mimic the neuritogenic activity of nerve growth factor (NGF) in rat pheochromocytoma (PC-12) cells. Methods The cytotoxic effect of 6-shogaol was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The neuritogenic activity was assessed by neurite outgrowth stimulation assay while the concentration of extracellular NGF in cell culture supernatant was assessed by enzyme-linked immunosorbent assay (ELISA). Involvement of cellular signaling pathways, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase1/2 (MEK/ERK1/2) and phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) in 6-shogaol-stimulated neuritogenesis were examined by using specific pharmacological inhibitors. Results 6-Shogaol (500 ng/ml) induced neuritogenesis that was comparable to NGF (50 ng/ml) and was not cytotoxic towards PC-12 cells. 6-Shogaol induced low level of NGF biosynthesis in PC-12 cells, showing that 6-shogaol stimulated neuritogenesis possibly by inducing NGF biosynthesis, and also acting as a substitute for NGF (NGF mimic) in PC-12 cells. The inhibitors of Trk receptor (K252a), MEK/ERK1/2 (U0126 and PD98059) and PI3K/AKT (LY294002) attenuated the neuritogenic activity of both NGF and 6-shogaol, respectively. Conclusions The present findings demonstrated that 6-shogaol induced neuritogenic activity in PC-12 cells via the activation MEK/ERK1/2 and PI3K/AKT signaling pathways. This study suggests that 6-shogaol could act as an NGF mimic, which may be beneficial for preventive and therapeutic uses in neurodegenerative diseases

    Phytochemical and Cytotoxic Investigations of Curcuma mangga Rhizomes

    No full text
    Investigations on the cytotoxic effects of the crude methanol and fractionated extracts (hexane, ethyl acetate) C. mangga against six human cancer cell lines, namely the hormone-dependent breast cell line (MCF-7), nasopharyngeal epidermoid cell line (KB), lung cell line (A549), cervical cell line (Ca Ski), colon cell lines (HCT 116 and HT-29), and one non-cancer human fibroblast cell line (MRC-5) were conducted using an in-vitro neutral red cytotoxicity assay. The crude methanol and fractionated extracts (hexane and ethyl acetate) displayed good cytotoxic effects against MCF-7, KB, A549, Ca Ski and HT-29 cell lines, but exerted no damage on the MRC-5 line. Chemical investigation from the hexane and ethyl acetate fractions resulted in the isolation of seven pure compounds, namely (E)-labda-8(17),12-dien-15,16-dial (1), (E)-15,16-bisnor-labda-8(17),11-dien-13-on (2), zerumin A (3), β-sitosterol, curcumin, demethoxycurcumin and bis-demethoxycurcumin. Compounds 1 and 3 exhibited high cytotoxic effects against all six selected cancer cell lines, while compounds 2 showed no anti-proliferative activity on the tested cell lines. Compound 1 also demonstrated strong cytotoxicity against the normal cell line MRC-5. This paper reports for the first time the cytotoxic activities of C. mangga extracts on KB, A549, Ca Ski, HT-29 and MRC-5, and the occurrence of compound 2 and 3 in C. mangga
    corecore