1,189 research outputs found

    GINZBURG-LANDAU THEORY OF VORTICES IN dd-WAVE SUPERCONDUCTORS

    Full text link
    Ginzburg-Landau theory is used to study the properties of single vortices and of the Abrikosov vortex lattice in a dx2y2d_{x^2-y^2} superconductor. For a single vortex, the ss-wave order parameter has the expected four-lobe structure in a ring around the core and falls off like 1/r21/r^2 at large distances. The topological structure of the ss-wave order parameter consists of one counter-rotating unit vortex, centered at the core, surrounded by four symmetrically placed positive unit vortices. The Abrikosov lattice is shown to have a triangular structure close to TcT_c and an oblique structure at lower temperatures. Comparison is made to recent neutron scattering data.Comment: 4 pages, REVTeX, 3 figures available upon reques

    Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: A longitudinal household study

    Get PDF
    Background. Natural immunity to Streptococcus pneumoniae is thought to be induced by exposure to S. pneumoniae or cross-reactive antigens. No longitudinal studies of carriage of and immune responses to S. pneumoniae have been conducted using sophisticated immunological laboratory techniques.Methods. We enrolled 121 families with young children into this study. Nasopharyngeal (NP) swabs were collected monthly for 10 months from all family members and were cultured in a standard fashion. Cultured S. pneumoniae isolates were serotyped. At the beginning (month 0) and end (month 10) of the study, venous blood was collected from family members 118 years old. Serotype-specific antipolysaccharide immunoglobulin G (IgG) and functional antibody and antibodies to pneumolysin, pneumococcal surface protein A (PspA), and pneumococcal surface antigen A (PsaA) were measured in paired serum samples.Results. Levels of anticapsular IgG increased significantly after carriage of serotypes 9V, 14, 18C, 19F, and 23F by an individual or family member. For serotype 14, a higher level of anticapsular IgG at the beginning of the study was associated with reduced odds of carriage (P = .0006). There was a small (similar to 20%) but significant increase in titers of antibodies to PsaA and pneumolysin but no change in titers of antibody to PspA.Conclusions. Adults respond to NP carriage by mounting anticapsular and weak antiprotein antibody responses, and naturally induced anticapsular IgG can prevent carriage

    Understanding the effect of cognitive/brain reserve and depression on regional atrophy in early Alzheimer’s disease

    Get PDF
    Introduction: Depression in patients with mild cognitive impairment (MCI) and dementia of the Alzheimer’s type (AD) is associated with worse prognosis. Indeed, depressed MCI patients have worse cognitive performance and greater loss of gray-matter volume in several brain areas. To date, knowledge of the factors that can mitigate this detrimental effect is still limited. The aim of the present study was to understand in what way cognitive reserve/brain reserve and depression interact and are linked to regional atrophy in early stage AD. Methods: Depression was evaluated with the Patient Health Questionnaire-9 in 90 patients with early AD, and a cutoff of ≥ 5 was used to separate depressed (n = 44) from non-depressed (n = 46) patients. Each group was further stratified into high/low cognitive reserve/brain reserve. Cognitive reserve was calculated using years of education as proxy, while normalized parenchymal volumes were used to estimate brain reserve. Voxel-based morphometry was carried out to extract and analyze gray-matter maps. 2 × 2 ANCOVAs were run to test the effect of the reserve-by-depression interaction on gray matter. Age and hippocampal ratio were used as covariates. Composite indices of major cognitive domains were also analyzed with comparable models. Results: No reserve-by-depression interaction was found in the analytical models of gray matter. Depression was associated with less gray matter volume in the cerebellum and parahippocampal gyrus. The brain reserve-by-depression interaction was a significant predictor of executive functioning. Among those with high brain reserve, depressed patients had poorer executive skills. No significant results were found in association with cognitive reserve. Conclusion: These findings suggest that brain reserve may modulate the association between neurodegeneration and depression in patients with MCI and dementia of the AD type, influencing in particular executive functioning

    Biochem Soc Trans

    Get PDF
    Abnormal protein aggregation and intracellular or extracellular accumulation of misfolded and aggregated proteins are key events in the pathogenesis of different neurodegenerative diseases. Furthermore, endoplasmic reticulum stress and impairment of the ubiquitin-proteasome system probably contribute to neurodegeneration in these diseases. A characteristic feature of AD (Alzheimer's disease) is the abnormal accumulation of Abeta (amyloid beta-peptide) in the brain. Evidence shows that the AD-associated PS (presenilin) also forms aggregates under certain conditions and that another AD-associated protein, ubiquilin-1, controls protein aggregation and deposition of aggregated proteins. Here, we review the current knowledge of ubiquilin-1 and PS in protein aggregation and related events that potentially influence neurodegeneration

    Field induced dx2y2+idxyd_{x^2-y^2}+id_{xy} state and marginal stability of high-Tc superconductors

    Full text link
    It is shown that the {\em complex} dxyd_{xy} component is generated in d-wave superconductor in the magnetic field. As one enters superconducting state at finite field the normal to superconducting transition occurs into bulk dx2y2+idxyd_{x^2-y^2}+i d_{xy} state . The driving force for the transition is the linear coupling between magnetic field and non zero magnetization of the dx2y2+idxyd_{x^2-y^2}+i d_{xy} condensate. The external magnetic field violates parity and time reversal symmetries and the nodal quasiparticle states respond by generating the idxyid_{xy} component of the order parameter, with the magnitude estimated to be on the order of few Kelvin. Parity (P) and time reversal (T) symmetries are violated in this state.Comment: 4 pages, latex file with two eps figure file

    Ginzburg Landau theory for d-wave pairing and fourfold symmetric vortex core structure

    Full text link
    The Ginzburg Landau theory for d_{x^2-y^2}-wave superconductors is constructed, by starting from the Gor'kov equation with including correction terms up to the next order of ln(T_c/T). Some of the non-local correction terms are found to break the cylindrical symmetry and lead to the fourfold symmetric core structure, reflecting the internal degree of freedom in the pair potential. Using this extended Ginzburg Landau theory, we investigate the fourfold symmetric structure of the pair potential, current and magnetic field around an isolated single vortex, and clarify concretely how the vortex core structure deviates from the cylindrical symmetry in the d_{x^2-y^2}-wave superconductors.Comment: 12 pages including 8 eps figs, LaTeX with jpsj.sty & epsfi

    X-ray Raman scattering study of aligned polyfluorene

    Full text link
    We present a non-resonant inelastic x-ray scattering study at the carbon K-edge on aligned poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] and show that the x-ray Raman scattering technique can be used as a practical alternative to x-ray absorption measurements. We demonstrate that this novel method can be applied to studies on aligned π\pi-conjugated polymers complementing diffraction and optical studies. Combining the experimental data and a very recently proposed theoretical scheme we demonstrate a unique property of x-ray Raman scattering by performing the symmetry decomposition on the density of unoccupied electronic states into ss- and pp-type symmetry contributions.Comment: 19 pages, 8 figure

    The Effects of Phase Separation in the Cuprate Superconductors

    Full text link
    Phase separation has been observed by several different experiments and it is believed to be closely related with the physics of cuprates but its exactly role is not yet well known. We propose that the onset of pseudogap phenomenon or the upper pseudogap temperature TT^* has its origin in a spontaneous phase separation transition at the temperature Tps=TT_{ps}=T^*. In order to perform quantitative calculations, we use a Cahn-Hilliard (CH) differential equation originally proposed to the studies of alloys and on a spinodal decomposition mechanism. Solving numerically the CH equation it is possible to follow the time evolution of a coarse-grained order parameter which satisfies a Ginzburg-Landau free-energy functional commonly used to model superconductors. In this approach, we follow the process of charge segregation into two main equilibrium hole density branches and the energy gap normally attributed to the upper pseudogap arises as the free-energy potential barrier between these two equilibrium densities below TpsT_{ps}. This simulation provides quantitative results %on the hole doping and temperature %dependence of the degree of the charge inhomogeneity in agreement with %some experiments and the simulations reproduce the observed stripe and granular pattern of segregation. Furthermore, with a Bogoliubov-deGennes (BdG) local superconducting critical temperature calculation for the lower pseudogap or the onset of local superconductivity, it yields novel interpretation of several non-conventional measurements on cuprates.Comment: Published versio
    corecore