680 research outputs found

    GINZBURG-LANDAU THEORY OF VORTICES IN dd-WAVE SUPERCONDUCTORS

    Full text link
    Ginzburg-Landau theory is used to study the properties of single vortices and of the Abrikosov vortex lattice in a dx2−y2d_{x^2-y^2} superconductor. For a single vortex, the ss-wave order parameter has the expected four-lobe structure in a ring around the core and falls off like 1/r21/r^2 at large distances. The topological structure of the ss-wave order parameter consists of one counter-rotating unit vortex, centered at the core, surrounded by four symmetrically placed positive unit vortices. The Abrikosov lattice is shown to have a triangular structure close to TcT_c and an oblique structure at lower temperatures. Comparison is made to recent neutron scattering data.Comment: 4 pages, REVTeX, 3 figures available upon reques

    Beta diversity of diatom species and ecological guilds : Response to environmental and spatial mechanisms along the stream watercourse

    Get PDF
    1. Understanding the mechanisms that drive beta diversity (i.e. beta-diversity), an important aspect of regional biodiversity, remains a priority for ecological research. beta-diversity and its components can provide insights into the processes generating regional biodiversity patterns. We tested whether environmental filtering or dispersal related processes predominated along the stream watercourse by analysing the responses of taxonomic and functional diatom beta-diversity to environmental and spatial factors. 2. We examined the variation in total beta-diversity and its components (turnover and nestedness) in benthic diatom species and ecological guilds (motile, planktonic, low-and high profile) with respect to watercourse position (up-, mid-and downstream) in 2,182 sites throughout France. We tested the effects of pure environmental and pure spatial factors on beta-diversity with partial Mantel tests. Environmental factors included eight physicochemical variables, while geographical distances between sites were used as spatial factors. We also correlated a and c-diversity, and the degree of nestedness (NODF metric) with environmental variables. 3. Total beta-diversity and its turnover component displayed higher values upstream than mid-and downstream. The nestedness component exhibited low values, even when NODF values increased from up-to downstream. Pure environmental factors were highly significant for explaining total beta-diversity and turnover regardless of watercourse position, but pure spatial factors were mostly significant mid-and downstream, with geographical distance being positively correlated with beta-diversity. Across sites, nutrient enrichment decreased turnover but increased the degree of nestedness. Motile and low profile diatoms comprised the most abundant guilds, but their beta-diversity patterns varied in an opposite way. The lowest guild beta-diversity was observed upstream for low profile species, and downstream for motile species. 4. In conclusion, environmental filtering seemed to play a major role in structuring metacommunities irrespective of site watercourse position. Filtering promoted strong turnover patterns, especially in disconnected upstream sites. The greater role of spatial factors mid-and downstream was consistent with mass effects rather than neutral processes because these sites had lower total beta-diversity than upstream sites. Motile species were most strongly affected by mass effects processes, whereas low profile species were primarily influenced by environmental conditions. Collectively, these findings suggest that partitioning of total beta-diversity into its components and the use of diatom ecological guilds provide a useful framework for assessing the mechanisms underlying metacommunity patterns along the stream watercourse.Peer reviewe

    NMR relaxation time around a vortex in stripe superconductors

    Full text link
    Site-dependent NMR relaxation time T1(r)T_1({\bf r}) is calculated in the vortex state using the Bogoliubov-de Gennes theory, taking account of possible "field-induced stripe'' states in which the magnetism arises locally around a vortex core in d-wave superconductivity. The recently observed huge enhancement T1−1(r)T_1^{-1}({\bf r}) below TcT_c at a core site in Tl2_2Ba2_2CuO6_6 is explained. The field-induced stripe picture explains consistently other relevant STM and neutron experiments.Comment: 4 pages, 4 figure

    The Effects of Phase Separation in the Cuprate Superconductors

    Full text link
    Phase separation has been observed by several different experiments and it is believed to be closely related with the physics of cuprates but its exactly role is not yet well known. We propose that the onset of pseudogap phenomenon or the upper pseudogap temperature T∗T^* has its origin in a spontaneous phase separation transition at the temperature Tps=T∗T_{ps}=T^*. In order to perform quantitative calculations, we use a Cahn-Hilliard (CH) differential equation originally proposed to the studies of alloys and on a spinodal decomposition mechanism. Solving numerically the CH equation it is possible to follow the time evolution of a coarse-grained order parameter which satisfies a Ginzburg-Landau free-energy functional commonly used to model superconductors. In this approach, we follow the process of charge segregation into two main equilibrium hole density branches and the energy gap normally attributed to the upper pseudogap arises as the free-energy potential barrier between these two equilibrium densities below TpsT_{ps}. This simulation provides quantitative results %on the hole doping and temperature %dependence of the degree of the charge inhomogeneity in agreement with %some experiments and the simulations reproduce the observed stripe and granular pattern of segregation. Furthermore, with a Bogoliubov-deGennes (BdG) local superconducting critical temperature calculation for the lower pseudogap or the onset of local superconductivity, it yields novel interpretation of several non-conventional measurements on cuprates.Comment: Published versio

    ss- and dxyd_{xy}-wave components induced around a vortex in dx2−y2d_{x^2-y^2}-wave superconductors

    Full text link
    Vortex structure of dx2−y2d_{x^2-y^2}-wave superconductors is microscopically analyzed in the framework of the quasi-classical Eilenberger equations. If the pairing interaction contains an ss-wave (dxyd_{xy}-wave) component in addition to a dx2−y2d_{x^2-y^2}-wave component, the ss-wave (dxyd_{xy}-wave) component of the order parameter is necessarily induced around a vortex in dx2−y2d_{x^2-y^2}-wave superconductors. The spatial distribution of the induced ss-wave and dxyd_{xy}-wave components is calculated. The ss-wave component has opposite winding number around vortex near the dx2−y2d_{x^2-y^2}-vortex core and its amplitude has the shape of a four-lobe clover. The amplitude of dxyd_{xy}-component has the shape of an octofoil. These are consistent with results based on the GL theory.Comment: RevTex,9 pages, 6 figures in a uuencoded fil

    The Structure of a Vortex in the t-J Model

    Full text link
    We study the single-vortex solution of the t-J model within resonating-valence-bond (RVB) mean-field theory. We find two types of vortex cores, insulating and metallic, depending on the parameters of the model. The pairing order parameter near both cores have dx2−y2+iηdxyd_{x^2 -y^2}+i\eta d_{xy} symmetry. For some range of t/Jt/J the calculated tunneling spectrum of the metallic vortex core agrees qualitatively with the STM tunneling data for BSCCO

    Ginzburg Landau theory for d-wave pairing and fourfold symmetric vortex core structure

    Full text link
    The Ginzburg Landau theory for d_{x^2-y^2}-wave superconductors is constructed, by starting from the Gor'kov equation with including correction terms up to the next order of ln(T_c/T). Some of the non-local correction terms are found to break the cylindrical symmetry and lead to the fourfold symmetric core structure, reflecting the internal degree of freedom in the pair potential. Using this extended Ginzburg Landau theory, we investigate the fourfold symmetric structure of the pair potential, current and magnetic field around an isolated single vortex, and clarify concretely how the vortex core structure deviates from the cylindrical symmetry in the d_{x^2-y^2}-wave superconductors.Comment: 12 pages including 8 eps figs, LaTeX with jpsj.sty & epsfi

    Onset of Vortices in Thin Superconducting Strips and Wires

    Full text link
    Spontaneous nucleation and the consequent penetration of vortices into thin superconducting films and wires, subjected to a magnetic field, can be considered as a nonlinear stage of primary instability of the current-carrying superconducting state. The development of the instability leads to the formation of a chain of vortices in strips and helicoidal vortex lines in wires. The boundary of instability was obtained analytically. The nonlinear stage was investigated by simulations of the time-dependent generalized Ginzburg-Landau equation.Comment: REVTeX 3.0, 12 pages, 5Postscript figures (uuencoded). Accepted for Phys. Rev.

    Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation : A randomized trial among urban office workers

    Get PDF
    Urbanization reduces microbiological abundance and diversity, which has been associated with immune mediated diseases. Urban greening may be used as a prophylactic method to restore microbiological diversity in cities and among urbanites. This study evaluated the impact of air-circulating green walls on bacterial abundance and diversity on human skin, and on immune responses determined by blood cytokine measurements. Human subjects working in offices in two Finnish cities (Lahti and Tampere) participated in a two-week intervention, where green walls were installed in the rooms of the experimental group. Control group worked without green walls. Skin and blood samples were collected before (Day0), during (Day14) and two weeks after (Day28) the intervention. The relative abundance of genus Lactobacillus and the Shannon diversity of phylum Proteobacteria and class Gammaproteobacteria increased in the experimental group. Proteobacterial diversity was connected to the lower proinflammatory cytokine IL-17A level among participants in Lahti. In addition, the change in TGF-beta 1 levels was opposite between the experimental and control group. As skin Lactobacillus and the diversity of Proteobacteria and Gammaproteobacteria are considered advantageous for skin health, air-circulating green walls may induce beneficial changes in a human microbiome. The immunomodulatory potential of air-circulating green walls deserves further research attention.Peer reviewe
    • …
    corecore