43 research outputs found

    The neurotrophin receptor p75NTR mediates early anti-inflammatory effects of estrogen in the forebrain of young adult rats

    Get PDF
    BACKGROUND: Estrogen suppresses microglial activation and extravasation of circulating monocytes in young animals, supporting an anti-inflammatory role for this hormone. However, the mechanisms underlying estrogen's anti-inflammatory effects, especially in vivo, are not well understood. The present study tests the hypothesis that anti-inflammatory effects of estrogen are mediated by the pan-neurotrophin receptor p75NTR. Previously, we reported that estrogen attenuated local increases of interleukin(IL)-1β in the NMDA-lesioned olfactory bulb, while further increasing NGF expression. RESULTS: The present studies show that this lesion enhances expression of the neurotrophin receptor p75NTR at the lesion site, and p75NTR expression is further enhanced by estrogen treatment to lesioned animals. Specifically, estrogen stimulates p75NTR expression in cells of microvessels adjacent to the lesion site. To determine the role of this receptor in mediating estrogen's anti-inflammatory effects, a p75NTR neutralizing antibody was administered at the same time the lesion was created (by stereotaxic injections of NMDA) and specific markers of the inflammatory cascade were measured. Olfactory bulb injections of NMDA+vehicle (preimmune serum) increased IL-1β and activated the signaling molecule c-jun terminal kinase (JNK)-2 at 6 h. At 24 h, the lesion significantly increased matrix metalloproteinase (MMP)-9 and prostaglandin (PG)E(2), a COX-2 mediated metabolite of arachadonic acid. All of these markers were significantly attenuated by estrogen in a time-dependent manner. However, estrogen's effects on all these markers were abolished in animals that received anti-p75NTR. CONCLUSION: These data support the hypothesis that estrogen's anti-inflammatory effects may be, in part, mediated by this neurotrophin receptor. In view of the novel estrogen-dependent expression of p75NTR in cells associated with microvessels, these data also suggest that the blood brain barrier is a critical locus of estrogen's neuro-immune effects

    Blood Brain Barrier and Neuroinflammation Are Critical Targets of IGF-1-Mediated Neuroprotection in Stroke for Middle-Aged Female Rats

    Get PDF
    Ischemia-induced cerebral infarction is more severe in older animals as compared to younger animals, and is associated with reduced availability of insulin-like growth factor (IGF)-1. This study determined the effect of post-stroke IGF-1 treatment, and used microRNA profiling to identify mechanisms underlying IGF-1's neuroprotective actions. Post-stroke ICV administration of IGF-1 to middle-aged female rats reduced infarct volume by 39% when measured 24h later. MicroRNA analyses of ischemic tissue collected at the early post-stroke phase (4h) indicated that 8 out of 168 disease-related miRNA were significantly downregulated by IGF-1. KEGG pathway analysis implicated these miRNA in PI3K-Akt signaling, cell adhesion/ECM receptor pathways and T-and B-cell signaling. Specific components of these pathways were subsequently analyzed in vehicle and IGF-1 treated middle-aged females. Phospho-Akt was reduced by ischemia at 4h, but elevated by IGF-1 treatment at 24h. IGF-1 induced Akt activation was preceded by a reduction of blood brain barrier permeability at 4h post-stroke and global suppression of cytokines including IL-6, IL-10 and TNF-α. A subset of these cytokines including IL-6 was also suppressed by IGF-1 at 24h post-stroke. These data are the first to show that the temporal and mechanistic components of post-stroke IGF-1 treatment in older animals, and that cellular components of the blood brain barrier may serve as critical targets of IGF-1 in the aging brain

    Sex and the Lab: An Alcohol-Focused Commentary on the NIH Initiative to Balance Sex in Cell and Animal Studies

    Get PDF
    In May 2014, Dr. Francis Collins, the director of US National Institutes of Health, and Dr. Janine Clayton, the director of the US National Institutes of Health Office of Research on Women’s Health (ORWH) published a commentary in the journal Nature announcing new policies to ensure that preclinical research funded by the NIH consider both males and females. While these policies are still developing, they have already generated great interest by the scientific community and triggered both criticism and applause. This review provides a description and interpretation of the NIH guidelines and it traces the history that led to their implementation. As expected, this NIH initiative generated some anxiety in the scientific community. The use of female animals in the investigation of basic mechanisms is perceived to increase variability in the results, and the use of both sexes has been claimed to slow the pace of scientific discoveries and to increase the cost at a time characterized by declining research support

    An Antagomir to MicroRNA Let7f Promotes Neuroprotection in an Ischemic Stroke Model

    Get PDF
    We previously showed that middle-aged female rats sustain a larger infarct following experimental stroke as compared to younger female rats, and paradoxically, estrogen treatment to the older group is neurotoxic. Plasma and brain insulin-like growth factor-1 (IGF-1) levels decrease with age. However, IGF-1 infusion following stroke, prevents estrogen neurotoxicity in middle-aged female rats. IGF1 is neuroprotective and well tolerated, but also has potentially undesirable side effects. We hypothesized that microRNAs (miRNAs) that target the IGF-1 signaling family for translation repression could be alternatively suppressed to promote IGF-1-like neuroprotection. Here, we report that two conserved IGF pathway regulatory microRNAs, Let7f and miR1, can be inhibited to mimic and even extend the neuroprotection afforded by IGF-1. Anti-mir1 treatment, as late as 4 hours following ischemia, significantly reduced cortical infarct volume in adult female rats, while anti-Let7 robustly reduced both cortical and striatal infarcts, and preserved sensorimotor function and interhemispheric neural integration. No neuroprotection was observed in animals treated with a brain specific miRNA unrelated to IGF-1 (anti-miR124). Remarkably, anti-Let7f was only effective in intact females but not males or ovariectomized females indicating that the gonadal steroid environment critically modifies miRNA action. Let7f is preferentially expressed in microglia in the ischemic hemisphere and confirmed in ex vivo cultures of microglia obtained from the cortex. While IGF-1 was undetectable in microglia harvested from the non-ischemic hemisphere, IGF-1 was expressed by microglia obtained from the ischemic cortex and was further elevated by anti-Let7f treatment. Collectively these data support a novel miRNA-based therapeutic strategy for neuroprotection following stroke

    New mechanistic insights, novel treatment paradigms, and clinical progress in cerebrovascular diseases

    Get PDF
    The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed. Moreover, translationally relevant aspects are increasingly recognized in basic science studies, which is believed to increase their predictive value and the relevance of obtained findings for clinical application.This review reports key results from some of the most remarkable and encouraging achievements in neurovascular research that have been reported at the 10th International Symposium on Neuroprotection and Neurorepair. Basic science topics discussed herein focus on aspects such as neuroinflammation, extracellular vesicles, and the role of sex and age on stroke recovery. Translational reports highlighted endovascular techniques and targeted delivery methods, neurorehabilitation, advanced functional testing approaches for experimental studies, pre-and post-conditioning approaches as well as novel imaging and treatment strategies. Beyond ischemic stroke, particular emphasis was given on activities in the fields of traumatic brain injury and cerebral hemorrhage in which promising preclinical and clinical results have been reported. Although the number of neutral outcomes in clinical trials is still remarkably high when targeting cerebrovascular diseases, we begin to evidence stepwise but continuous progress towards novel treatment options. Advances in preclinical and translational research as reported herein are believed to have formed a solid foundation for this progress
    corecore