7,430 research outputs found

    Study of Unmanned Systems to Evaluate the Martian Environment. Volume IV - Summary

    Get PDF
    Unmanned space mission to determine Martian environmental factors influencing design of systems for manned space mission to Mars - summary repor

    Study of Unmanned Systems to Evaluate the Martian Environment. Volume II - Experiments

    Get PDF
    Unmanned space mission to determine Martian environmental factors influencing design of systems for manned space mission to Mars - mission experiment requirement

    Procedure for generating global atmospheric engine emissions data from future supersonic transport aircraft. The 1990 high speed civil transport studies

    Get PDF
    The input for global atmospheric chemistry models was generated for baseline High Speed Civil Transport (HSCT) configurations at Mach 1.6, 2.2, and 3.2. The input is supplied in the form of number of molecules of specific exhaust constituents injected into the atmosphere per year by latitude and by altitude (for 2-D codes). Seven exhaust constituents are currently supplied: NO, NO2, CO, CO2, H2O, SO2, and THC (Trace Hydrocarbons). An eighth input is also supplied, NO(x), the sum of NO and NO2. The number of molecules of a given constituent emitted per year is a function of the total fuel burned by a supersonic fleet and the emission index (EI) of the aircraft engine for the constituent in question. The EIs for an engine are supplied directly by the engine manufacturers. The annual fuel burn of a supersonic fleet is calculated from aircraft performance and economic criteria, both of which are strongly dependent on basic design parameters such as speed and range. The altitude and latitude distribution of the emission is determined based on 10 Intern. Air Transport Assoc. (IATA) regions chosen to define the worldwide route structure for future HSCT operations and the mission flight profiles

    Multi-community command and control systems in law enforcement: An introductory planning guide

    Get PDF
    A set of planning guidelines for multi-community command and control systems in law enforcement is presented. Essential characteristics and applications of these systems are outlined. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Program management techniques and joint powers agreements for multicommunity programs are discussed in detail. A description of a typical multi-community computer-aided dispatch system is appended

    Diagnostic and therapeutic considerations in idiopathic hypereosinophilia with warm autoimmune hemolytic anemia.

    Get PDF
    Hypereosinophilic syndrome (HES) encompasses numerous diverse conditions resulting in peripheral hypereosinophilia that cannot be explained by hypersensitivity, infection, or atopy and that is not associated with known systemic diseases with specific organ involvement. HES is often attributed to neoplastic or reactive causes, such as chronic eosinophilic leukemia, although a majority of cases remains unexplained and are considered idiopathic. Here, we review the current diagnosis and management of HES and present a unique case of profound hypereosinophilia associated with warm autoimmune hemolytic anemia requiring intensive management. This case clearly illustrates the limitations of current knowledge with respect to hypereosinophilia syndrome as well as the challenges associated with its classification and management

    Application of computer-aided dispatch in law enforcement: An introductory planning guide

    Get PDF
    A set of planning guidelines for the application of computer-aided dispatching (CAD) to law enforcement is presented. Some essential characteristics and applications of CAD are outlined; the results of a survey of systems in the operational or planning phases are summarized. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Detailed descriptions of typical law enforcement CAD systems, and a list of vendor sources, are given in appendixes

    A general inversion for end-member ratios in binary mixing systems

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q11007, doi:10.1029/2005GC000975.Binary mixing is one of the most common models used to explain variations in geochemical data. When the data being modeled are ratios of elements or isotopes, the mixtures follow hyperbolic trends with curvatures that depend on a cross-term representing the relative concentrations of the elements or isotopes under consideration in the mixing components. The inverse problem of estimating mixing components is difficult because of the cross-term in the hyperbolic equation, which requires the use of nonlinear methods to estimate the mixing parameters, and because the end-member ratio values are intrinsically underdetermined unless the mixing proportions of the samples are known a priori, which is not generally the case. I use maximum likelihood methods to address these issues and derive a general inversion for binary mixing model parameters from ratio-ratio data. I apply the method to synthetic test data and a global compilation of 230Th/232Th versus 87Sr/86Sr data from oceanic basalts and find that the concentration ratio parameter is well-constrained by the inversion while the end-member ratio estimates are strongly dependent on the initial guesses used to start the iterative solver, reflecting the underdetermined nature of the end-member positions on the mixing hyperbola. Monte Carlo methods that randomly perturb the initial guesses can be used to improve error estimates, and goodness-of-fit statistics can be used to assess the performance of the mixing model for explaining data variance

    Climate dynamics experiments using a GCM simulations

    Get PDF
    The study of surface-atmosphere interactions has begun with studies of the effect of altering the ocean and land boundaries. A ten year simulation of global climate using observed sea surface temperature anomalies has begun using the NCAR Community Climate Model (CCM1). The results for low resolution (R15) were computed for the first 8 years of the simulation and compared with the observed surface temperatures and the MSU (Microwave Sounding Unit) observations of tropospheric temperature. A simulation at higher resolution (T42) was done to ascertain the effect of interactive soil hydrology on the system response to an El Nino sea surface temperature perturbation. Initial analysis of this simulations was completed
    corecore