975 research outputs found

    Different Modulation of the Cortical Silent Period by Two Phases of Short Interval Intracortical Inhibition

    Get PDF
    PURPOSE: To investigate the influence of 2 phases of short interval intracortical inhibition (SICI) on the cortical silent period (SP). MATERIALS AND METHODS: Single- and paired-pulse transcranial magnetic stimulations (TMSs) at 1 and 2.5ms interstimulus intervals (ISIs) were applied to the left motor cortex in 12 healthy subjects while their right hand muscles were moderately activated. Conditioning stimulation intensity was 90% of the active motor threshold (AMT). Test stimulation intensities were 120, 140, 160, 180, 200, 220, 240, 260% of the AMT and at 100% of the maximal stimulator output, the order of which was arranged randomly. The rectified electromyography area of motor evoked potential (MEP) and duration of the SP were measured off-line using a computerized program. RESULTS: At high-test stimulation intensities, MEP areas were saturated in both single- and paired-pulse stimulations, except that saturated MEPs were smaller for the paired-pulse TMS at 1ms ISI than for the other conditions. As the test stimulation intensity increased, SP was progressively prolonged in both single- and paired-pulse stimulations but was shorter in paired-pulse than single-pulse TMS. Overall, the ratio of SP duration/MEP area was comparable between single- and paired-pulse TMS except for the paired-pulse TMS at 1 ms ISI with a test stimulation intensity at 140-180% of the AMT, in which the ratio was significantly higher than in the single pulse TMS. CONCLUSION: These results suggest that 2 phases of SICI modulate MEP saturation and SP duration differently and provide additional evidence supporting the view that 2 phases of SICI are mediated by different inhibitory mechanisms.ope

    PAGaN I: Multi-Frequency Polarimetry of AGN Jets with KVN

    Full text link
    Active Galactic Nuclei (AGN) with bright radio jets offer the opportunity to study the structure of and physical conditions in relativistic outflows. For such studies, multi-frequency polarimetric very long baseline interferometric (VLBI) observations are important as they directly probe particle densities, magnetic field geometries, and several other parameters. We present results from first-epoch data obtained by the Korean VLBI Network (KVN) within the frame of the Plasma Physics of Active Galactic Nuclei (PAGaN) project. We observed seven radio-bright nearby AGN at frequencies of 22, 43, 86, and 129 GHz in dual polarization mode. Our observations constrain apparent brightness temperatures of jet components and radio cores in our sample to >108.01>10^{8.01} K and >109.86>10^{9.86} K, respectively. Degrees of linear polarization mLm_{L} are relatively low overall: less than 10%. This indicates suppression of polarization by strong turbulence in the jets. We found an exceptionally high degree of polarization in a jet component of BL Lac at 43 GHz, with mLm_{L} \sim 40%. Assuming a transverse shock front propagating downstream along the jet, the shock front being almost parallel to the line of sight can explain the high degree of polarization.Comment: 14 pages, 17 figures, 4 tables. To appear in JKAS (received 2015 July 27; accepted 2015 October 25). Note the PAGaN II companion paper by J. Oh et a

    PAGaN II: The Evolution of AGN Jets on Sub-Parsec Scales

    Full text link
    We report first results from KVN and VERA Array (KaVA) VLBI observations obtained in the frame of our Plasma-physics of Active Galactic Nuclei (PAGaN) project. We observed eight selected AGN at 22 and 43 GHz in single polarization (LCP) between March 2014 and April 2015. Each source was observed for 6 to 8 hours per observing run to maximize the uvuv coverage. We obtained a total of 15 deep high-resolution images permitting the identification of individual circular Gaussian jet components and three spectral index maps of BL Lac, 3C 111 and 3C 345 from simultaneous dual-frequency observations. The spectral index maps show trends in agreement with general expectations -- flat core and steep jets -- while the actual value of the spectral index for jets shows indications for a dependence on AGN type. We analyzed the kinematics of jet components of BL Lac and 3C 111, detecting superluminal proper motions with maximum apparent speeds of about 5c5c. This constrains the lower limits of the intrinsic component velocities to 0.98c\sim0.98c and the upper limits of the angle between jet and line of sight to \sim20deg\deg. In agreement with global jet expansion, jet components show systematically larger diameters dd at larger core distances rr, following the global relation d0.2rd\approx0.2r, albeit within substantial scatter.Comment: 13 pages, 15 figures, 4 tables. To appear in JKAS (received 2015 August 31; accepted 2015 October 15). Note the PAGaN I companion paper by J.-Y. Kim et a

    The Globular Cluster System of M60 (NGC 4649). I. CFHT MOS Spectroscopy and Database

    Full text link
    We present the measurement of radial velocities for globular clusters in M60, giant elliptical galaxy in the Virgo cluster. Target globular cluster candidates were selected using the Washington photometry based on the deep 16\arcmin \times 16\arcmin images taken at the KPNO 4m and using the VIVI photometry derived from the HST/WFPC2 archive images. The spectra of the target objects were obtained using the Multi-Object Spectrograph (MOS) at the Canada-France-Hawaii Telescope (CFHT). We have measured the radial velocity for 111 objects in the field of M60: 93 globular clusters (72 blue globular clusters with 1.0(CT1)<1.71.0\le(C-T_1)<1.7 and 21 red globular clusters with 1.7(CT1)<2.41.7\le(C-T_1)<2.4), 11 foreground stars, 6 small galaxies, and the nucleus of M60. The measured velocities of the 93 globular clusters range from 500\sim 500 km s1^{-1} to 1600\sim 1600 km s1^{-1}, with a mean value of 107025+271070_{-25}^{+27} km s1^{-1}, which is in good agreement with the velocity of the nucleus of M60 (vgal=1056v_{\rm gal}=1056 km s1^{-1}). Combining our results with data in the literature, we present a master catalog of radial velocities for 121 globular clusters in M60. The velocity dispersion of the globular clusters in the master catalog is found to be 23414+13234_{-14}^{+13} km s1^{-1} for the entire sample, 22316+13223_{-16}^{+13} km s1^{-1} for 83 blue globular clusters, and 25831+21258_{-31}^{+21} km s1^{-1} for 38 red globular clusters.Comment: 29 pages, 8 figures. To appear in Ap

    The Globular Cluster System of M60 (NGC 4649). II. Kinematics of the Globular Cluster System

    Full text link
    We present a kinematic analysis of the globular cluster (GC) system in the giant elliptical galaxy (gE) M60 in the Virgo cluster. Using the photometric and spectroscopic database of 121 GCs (83 blue GCs and 38 red GCs), we have investigated the kinematics of the GC system. We have found that the M60 GC system shows a significant overall rotation. The rotation amplitude of the blue GCs is slightly smaller than or similar to that of the red GCs, and their angles of rotation axes are similar. The velocity dispersions about the mean velocity and about the best fit rotation curve for the red GCs are marginally larger than those for the blue GCs. Comparison of observed stellar and GC velocity dispersion profiles with those calculated from the stellar mass profile shows that the mass-to-light ratio should be increased as the galactocentric distance increases, indicating the existence of an extended dark matter halo. The entire sample of GCs in M60 is found to have a tangentially biased velocity ellipsoid unlike the GC systems in other gEs. Two subsamples appear to have different velocity ellipsoids. The blue GC system has a modest tangentially biased velocity ellipsoid, while the red GC system has a modest radially biased or an isotropic velocity ellipsoid. From the comparison of the kinematic properties of the M60 GC system to those of other gEs (M87, M49, NGC 1399, NGC 5128, and NGC 4636), it is found that the velocity dispersion of the blue GC system is similar to or larger than that of the red GC system except for M60, and the rotation of the GC system is not negligible. The entire sample of each GC system shows an isotropic velocity ellipsoid except for M60, while the subsamples show diverse velocity ellipsoids. We discuss the implication of these results for the formation models of the GC system in gEs.Comment: 48 pages, 16 figures. To appear in Ap

    Mechanisms and energetics of free radical initiated disulfide bond cleavage in model peptides and insulin by mass spectrometry

    Get PDF
    We investigate the mechanism of disulfide bond cleavage in gaseous peptide and protein ions initiated by a covalently-attached regiospecific acetyl radical using mass spectrometry (MS). Highly selective S–S bond cleavages with some minor C–S bond cleavages are observed by a single step of collisional activation. We show that even multiple disulfide bonds in intact bovine insulin are fragmented in the MS2 stage, releasing the A- and B-chains with a high yield, which has been challenging to achieve by other ion activation methods. Yet, regardless of the previous reaction mechanism studies, it has remained unclear why (1) disulfide bond cleavage is preferred to peptide backbone fragmentation, and why (2) the S–S bond that requires the higher activation energy conjectured in previously suggested mechanisms is more prone to be cleaved than the C–S bond by hydrogen-deficient radicals. To probe the mechanism of these processes, model peptides possessing deuterated β-carbon(s) at the disulfide bond are employed. It is suggested that the favored pathway of S–S bond cleavage is triggered by direct acetyl radical attack at sulfur with concomitant cleavage of the S–S bond (S_H2). The activation energy for this process is substantially lower by ~9–10 kcal mol^(−1) than those of peptide backbone cleavage processes determined by density functional quantum chemical calculations. Minor reaction pathways are initiated by hydrogen abstraction from the α-carbon or the β-carbon of a disulfide, followed by β-cleavages yielding C–S or S–S bond scissions. The current mechanistic findings should be generally applicable to other radical-driven disulfide bond cleavages with different radical species such as the benzyl and methyl pyridyl radicals

    Necrotizing fasciitis involving the chest and abdominal wall caused by Raoultella planticola

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Raoultella planticola </it>was originally considered to be a member of environmental <it>Klebsiella</it>. The clinical significance of <it>R. planticola </it>is still not well known.</p> <p>Case presentation</p> <p>We describe the first case of necrotizing fasciitis involving the chest and abdominal wall caused by <it>R. planticola</it>. The identity of the organism was confirmed using 16S rRNA sequencing. The patient was successfully treated with the appropriate antibiotics combined with operative drainage and debridement.</p> <p>Conclusions</p> <p><it>R. planticola </it>had been described as environmental species, but should be suspected in extensive necrotizing fasciitis after minor trauma in mild to moderate immunocompromised patients.</p

    Sleep experiences during different lifetime periods and in vivo Alzheimer pathologies

    Get PDF
    Background Very little is known for the direction or causality of the relationship between lifetime sleep experiences and in vivo Alzheimers disease (AD) pathologies. This study aimed to examine the relationship between sleep experiences during the young adulthood, midlife, and late-life periods and in vivo cerebral beta-amyloid (Aβ) deposition and AD signature regional neurodegeneration in cognitively normal (CN) old adults. Methods This study included 202 CN old adults who participated in the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimers Disease (KBASE) study. All participants underwent a comprehensive clinical assessment, [11C] Pittsburgh Compound B positron emission tomography (PET), [18F] Fluorodeoxyglucose-PET, and magnetic resonance imaging. The quality and duration of sleep were assessed for the following age periods: 20–30s, 40–50s, and the most recent month. All analyses were adjusted for age, gender, education, apolipoprotein E ε4 status, vascular risk score, Hamilton Depression Rating Scale score, and use of sleep medication. Results Bad sleep quality and short sleep duration during midlife were significantly associated with increased Aβ deposition and AD signature regional hypometabolism, respectively. Although current bad sleep quality appeared to be associated with increased Aβ accumulation, this association disappeared after controlling for the effects of midlife sleep quality. Neither the quality nor duration of sleep during young adulthood was related to Aβ burden or neurodegeneration. Conclusions Bad sleep quality during midlife increases pathological Aβ deposition in the brain, while short sleep duration during the same period accelerates regional hypometabolism.This study was supported by a grant from the Ministry of Science, ICT, and Future Planning, Republic of Korea (Grant No: NRF-2014M3C7A1046042) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant No: HI18C0630). The funding source had no role in the design of the study; collection, analysis, and interpretation of the data; and writing of the manuscript
    corecore