10 research outputs found

    Molecular Mechanisms Underlying the Early Life Programming of the Liver

    Get PDF
    Clinical studies have demonstrated that intrauterine growth restriction (IUGR) offspring, faced with a nutritional mismatch postpartum, have an increased risk of developing the metabolic syndrome. The maternal protein restriction (MPR) rat model has been extensively studied to investigate the adverse effects of a nutritional mismatch in postnatal life of IUGR offspring. Previous studies have demonstrated that MPR leads to impaired function of the liver, an important metabolic organ. However the underlying mechanisms which predispose these offspring to the metabolic syndrome remain elusive. In the following studies, low protein diet during pregnancy and lactation led to IUGR offspring with decreased liver to body weight ratios, followed by increased circulating and hepatic cholesterol levels in both sexes at day 21 and exclusively in the male offspring at day 130. This was attributed to long-term repressive changes in histone modifications at the promoter of cholesterol 7α-hydroxylase, a rate-limiting enzyme that catabolizes cholesterol to bile acids. It was later demonstrated that these IUGR offspring exhibited increased molecular markers of hepatic endoplasmic reticulum (ER) stress and insulin resistance. Finally, these offspring were observed to have an increase in activity of Phase I drug metabolizing hepatic cytochrome p450 (Cyp) dependent enzymes. Collectively, these findings suggest that stable promoter-specific changes to post-translational histone modifications and elevated ER stress in the liver, are key molecular mechanisms whereby IUGR offspring receiving a nutritional mismatch in postnatal life develop high cholesterol and insulin resistance. Moreover, these offspring may require augmented doses of drugs in order to alleviate these symptoms

    Postnatal catch-up growth leads to higher p66Shc and mitochondrial dysfunction.

    Get PDF
    Epidemiological data suggest an inverse relationship between birth weight and long-term metabolic deficits, which is exacerbated by postnatal catch-up growth. We have previously demonstrated that rat offspring subject to maternal protein restriction (MPR) followed by catch-up growth exhibit impaired hepatic function and ER stress. Given that mitochondrial dysfunction is associated with various metabolic pathologies, we hypothesized that altered expression of p66Shc, a gatekeeper of oxidative stress and mitochondrial function, contributes to the hepatic defects observed in MPR offspring. To test this hypothesis, pregnant Wistar rats were fed a control (20% protein) diet or an isocaloric low protein (8%; LP) diet throughout gestation. Offspring born to control dams received a control diet in postnatal life, while MPR offspring remained on a LP diet (LP1) or received a control diet post-weaning (LP2) or at birth (LP3). At four months, LP2 offspring exhibited increased protein abundance of both p66Shc and the cis-trans isomerase Pin1. This was further associated with aberrant markers of oxidative stress (i.e., elevated 4-HNE, SOD-1 and SOD2, decreased catalase) and aerobic metabolism (i.e., increased phospho-PDH and LDHa, decreased complex II, citrate synthase and TFAM). We further demonstrated that tunicamycin-induced ER stress in HepG2 cells led to increased p66Shc protein abundance, suggesting that ER stress may underlie the programmed effects observed in vivo. In summary, because these defects are exclusive to adult LP2 offspring, it is possible that a low protein diet during perinatal life, a period of liver plasticity, followed by catch-up growth is detrimental to long-term mitochondrial function

    HIGHER HEPATIC MIR-29 EXPRESSION IN UNDERNOURISHED MALE RATS DURING THE POSTNATAL PERIOD TARGETS THE LONG-TERM REPRESSION OF INSULIN-LIKE GROWTH FACTOR 1

    Get PDF
    A nutritional mismatch in postnatal life of low birth weight offspring increases the risk of developing the metabolic syndrome. Moreover, this is associated with decreased hepatic insulin-like growth factor 1 (Igf1) expression, leading to impaired growth and metabolism. Previously we have demonstrated that the timing of nutritional restoration in perinatal life can differentially programhepatic gene expression. While micro RNAs also play an important role in silencing gene expression, to date, the impact of a nutritional mismatch in neonatal life on their long-term expression has not been evaluated. Given the complementarity of miR-29 to the 3i-UTR of Igf1, we examined how proteins restoration in maternal protein restricted rat (MPR) offspring influences hepatic miR-29 and Igf1 expression in adulthood. Pregnant Wistar rats were designated into one of four dietary regimes; 20% protein (Control), 8% protein during lactation only (LP-Lact), 8% protein during gestation only (LP1) or both (LP2). The steady-state expression of hepatic miR-29 mRNA significantly increased in LP2 offspring at postnatal day 21 and 130 and this was inversely related tohepatic Igf1 mRNA and body weight. Interestingly, this reciprocal association was stronger inLP-Lact offspring at postnatal day 21. Functional relevance of this in vivo relationship was evaluated by transfection of miR-29 mimics in neonatal clone 9 rat hepatoma cells. Transfection with miR-29suppressed Igf1 expression by 12 hours. Collectively, these findings implicate that nutritional restoration post-weaning (after liver differentiation) in MPR rat offspring fails to prevent long-term impaired growth, in part, due to miR-29 suppression of hepatic Igf1 expression

    Maternal Protein Restriction Elevates Cholesterol in Adult Rat Offspring Due to Repressive Changes in Histone Modifications at the Cholesterol 7α-Hydroxylase Promoter

    Get PDF
    Adverse events in utero, such as intrauterine growth restriction (IUGR), can permanently alter epigenetic mechanisms leading to the metabolic syndrome, which encompasses a variety of symptoms including augmented cholesterol. The major site for cholesterol homeostasis occurs via the actions of hepatic cholesterol 7α-hydroxylase (Cyp7a1), which catabolizes cholesterol to bile acids. To determine whether posttranslational histone modifications influence the long-term expression of Cyp7a1 in IUGR, we used a protein restriction model in rats. This diet during pregnancy and lactation led to IUGR offspring with decreased liver to body weight ratios, followed by increased circulating and hepatic cholesterol levels in both sexes at d 21 and exclusively in the male offspring at d 130. The augmented cholesterol was associated with decreases in the expression of Cyp7a1. Chromatin immunoprecipitation revealed that this was concomitant with diminished acetylation and enhanced methylation of histone H3 lysine 9 [K9,14], markers of chromatin silencing, surrounding the promoter region of Cyp7a1. These epigenetic modifications originate in part due to dietary-induced decreases in fetal hepatic Jmjd2a expression, a histone H3 [K9] demethylase. Collectively, these findings suggest that the augmented cholesterol observed in low-protein diet-derived offspring is due to permanent repressive posttranslational histone modifications at the promoter of Cyp7a1. Moreover, this is the first study to demonstrate that maternal undernutrition leads to long-term cholesterol dysregulation in the offspring via epigenetic mechanisms. (Molecular Endocrinology 25: 785–798, 2011

    Maternal protein restriction leads to enhanced hepatic gluconeogenic gene expression in adult male rat offspring due to impaired expression of the liver x receptor

    Get PDF
    Epidemiological studies demonstrate that the link between impaired fetal development and glucose intolerance in later life is exacerbated by postnatal catch-up growth. Maternal protein restriction (MPR) during pregnancy and lactation in the rat has been previously demonstrated to lead to impaired glucose tolerance in adulthood, however the effects of protein restoration during weaning on glucose homeostasis are largely unknown. Recent in vitro studies have identified that the liver X receptor α(LXRα) maintains glucose homeostasis by inhibiting critical genes involved in gluconeogenesis including G6pase (G6pc), 11β-Hsd1 (Hsd11b1) and Pepck (Pck1). Therefore, we hypothesized that MPR with postnatal catch-up growth would impair LXRα in vivo, which in turn would lead to augmented gluconeogenic LXRα-target gene expression and glucose intolerance. To examine this hypothesis, pregnant Wistar rats were fed a control (20%) protein diet (C) or a low (8%) protein diet during pregnancy and switched to a control diet at birth (LP). At 4 months, the LP offspring had impaired glucose tolerance. In addition, LP offspring had decreased LXRα expression, while hepatic expression of 11β-HSD1 and G6Pase was significantly higher. This was concomitant with decreased binding of LXRα to the putative LXRE on 11β-Hsd1 and G6pase. Finally,we demonstrated that the acetylation of histone H3 (K9,14) surrounding the transcriptional start site of hepatic Lxrα (Nr1h3) was decreased in LP offspring, suggesting MPR-induced epigenetic silencing of the Lxrα promoter. In summary, our study demonstrates for the first time the important role of LXRα in mediating enhanced hepatic gluconeogenic gene expression and consequent glucose intolerance in adult MPR offspring. © 2013 Society for Endocrinology

    Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7α-hydroxylase promoter

    Get PDF
    Adverse events in utero, such as intrauterine growth restriction (IUGR), can permanently alter epigenetic mechanisms leading to the metabolic syndrome, which encompasses a variety of symptoms including augmented cholesterol. The major site for cholesterol homeostasis occurs via the actions of hepatic cholesterol 7α-hydroxylase (Cyp7a1), which catabolizes cholesterol to bile acids. To determine whether posttranslational histone modifications influence the long-term expression of Cyp7a1 in IUGR, we used a protein restriction model in rats. This diet during pregnancy and lactation led to IUGR offspring with decreased liver to body weight ratios, followed by increased circulating and hepatic cholesterol levels in both sexes at d 21 and exclusively in the male offspring at d 130. The augmented cholesterol was associated with decreases in the expression of Cyp7a1. Chromatin immunoprecipitation revealed that this was concomitant with diminished acetylation and enhanced methylation of histone H3 lysine 9 [K9,14], markers of chromatin silencing, surrounding the promoter region of Cyp7a1. These epigenetic modifications originate in part due to dietary-induced decreases in fetal hepatic Jmjd2a expression, a histone H3 [K9] demethylase. Collectively, these findings suggest that the augmented cholesterol observed in low-protein dietderived offspring is due to permanent repressive posttranslational histone modifications at the promoter of Cyp7a1. Moreover, this is the first study to demonstrate that maternal undernutrition leads to long-term cholesterol dysregulation in the offspring via epigenetic mechanisms. © 2011 by The Endocrine Society

    A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation

    Get PDF
    The transcriptional activator MyoD serves as a master controller of myogenesis. Often in partnership with Mef2 (myocyte enhancer factor 2), MyoD binds to the promoters of hundreds of muscle genes in proliferating myoblasts yet activates these targets only upon receiving cues that launch differentiation. What regulates this off/on switch of MyoD function has been incompletely understood, although it is known to reflect the action of chromatin modifiers. Here, we identify KAP1 (KRAB [Krüppel-like associated box]-associated protein 1)/TRIM28 (tripartite motif protein 28) as a key regulator of MyoD function. In myoblasts, KAP1 is present with MyoD and Mef2 at many muscle genes, where it acts as a scaffold to recruit not only coactivators such as p300 and LSD1 but also corepressors such as G9a and HDAC1 (histone deacetylase 1), with promoter silencing as the net outcome. Upon differentiation, MSK1-mediated phosphorylation of KAP1 releases the corepressors from the scaffold, unleashing transcriptional activation by MyoD/Mef2 and their positive cofactors. Thus, our results reveal KAP1 as a previously unappreciated interpreter of cell signaling, which modulates the ability of MyoD to drive myogenesis
    corecore