1,211 research outputs found

    Therapeutic Effects of a New “Indigenous Vaccine” Developed Using Novel Native “Indian Bison Type” Genotype of Mycobacterium avium Subspecies paratuberculosis for the Control of Clinical Johne's Disease in Naturally Infected Goatherds in India

    Get PDF
    Therapeutic efficacy of an “Indigenous vaccine” has been evaluated with respect to a commercial vaccine (Gudair, Spain), for the control of clinical Johne's disease (JD) in naturally infected goatherds. Seventy-one goats (JD positive) were randomly divided into 3 groups (“Bison”, “Gudair” and “Sham-immunized”). After vaccination, goats were monitored for physical condition, morbidity, mortality, body weights, shedding of M. paratuberculosis (MAP) in feces, internal condition and lesions, as well as humoral and cell-mediated immune responses for 210 days. Study showed marked overall improvement in physical condition of vaccinated goats and average body weight gain was significantly higher (P < .05) in “Bison” group as compared to “Sham-immunized” goats. Mortality due to JD was significantly (P < .05) lower in vaccinated groups than in “sham-immunized”. Morbidity rates (due to diarrhea and weakness) were lower in “Bison” group as compared to other groups. Died goats from vaccinated groups showed regression of gross JD lesions and regeneration of fat layer around visceral organs while “Sham-immunized” goats exhibited frank lesions. Vaccinated goats had higher protective CMI response and also higher antibody titer for the trial period as compared to “Sham immunized”. Both vaccines also reduced shedding of MAP in feces significantly (P < .05). Though the two vaccines effectively restricted the severity of clinical symptoms of JD, however “Indigenous vaccine” was superior in many respects

    CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Get PDF
    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to be addressed for hydrogen to become an economical and viable option

    Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis

    Get PDF
    Idaho National Laboratory (INL) is performing high-temperature electrolysis (HTE) research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of ongoing INL and INL-sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and issues that need to be addressed in the future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on HTE using solid oxide cells do not provide clear evidence as to whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the SOECs showed that the hydrogen electrode and interconnect get partially oxidized and become nonconductive. This is most likely caused by the hydrogen stream composition and flow rate during cooldown. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation because of large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. Virkar et al. [19-22] have developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic nonequilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.United States. Department of Energy. Office of Energy Efficiency and Renewable EnergyUnited States. Office of the Assistant Secretary for Nuclear Energ

    The Concept and Analytical Investigation of CO2 and Steam Co-Electrolysis for Resource Utilization in Space Exploration

    Get PDF
    CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented

    Correlation between vitamin A, E, coenzyme Q10 and degree of insulin resistance in obese and non-obese subjects

    Get PDF
    The aim of the present study was to investigate correlation between plasma vitamin A, vitamin E, serum coenzyme Q10 levels and degree of insulin resistance in obese and normal weight people. The study was performed on 98 (21 Male, 77 Female) obese people and 78 (20 Male, 58 Female) control subjects. Vitamin A, E and coenzyme Q10 levels were adjusted to the lipid levels. Adjusted vitamin A and E and coenzyme Q10 levels of the obese female group were significantly lower than those of the control female group. Adjusted vitamin A and coenzyme Q10 levels of the obese male group were significantly lower than those of the control male group. Insulin resistance level of the obese female and male groups were significantly higher than that of the control female and male groups. There were no significant correlations between serum coenzyme Q10, plasma vitamin A and E levels and insulin resistance in obese and control subjects. Our findings show that it is essential to use the lipid adjusted levels of lipid soluble nutrients in obesity. Also, we have found no association between insulin resistance and vitamin A, vitamin E and coenzyme Q10 levels in obese subjects

    Investigating the association between early years foundation stage profile scores and subsequent diagnosis of an autism spectrum disorder: a retrospective study of linked healthcare and education data

    Get PDF
    Objective: We set out to test whether the early years foundation stage profile (EYFSP) score derived from 17 items assessed by teachers at the end of reception school year had any association with autism spectrum disorder (ASD) diagnosis in subsequent years. This study tested the feasibility of successfully linking education and health data. Design: A retrospective data linkage study. Setting and participants: The Born in Bradford longitudinal cohort of 13, 857 children. Outcome measures: We linked the EYFSP score at the end of reception year with subsequent diagnosis of an ASD, using all ASD general practitioner Read codes. We used the total EYFSP score and a subscore consisting of five key items in the EYFSP, prospectively identified using a panel of early years autism experts. Results: This study demonstrated the feasibility of linking education and health data using ASDs as an exemplar. A total of 8,935 children had linked primary care and education data with 20.7% scoring <25 on the total EYFSP and 15.2% scoring <10 on a EYFSP subscore proposed by an expert panel prospectively. The rate of diagnosis of ASDs at follow-up was just under 1% (84 children), children scoring <25 on the total EYFSP had a 4.1% chance of ASD compared with 0.15% of the remaining children. Using the prospectively designed subscore, this difference was greater (6.4% and 0.12%, respectively). Conclusions: We demonstrate the feasibility of linking education and health data. Performance on teacher ratings taken universally in school reception class can flag children at risk of ASDs. Further research is warranted to explore the utility of EYFSP as an initial screening tool for ASD in early school years

    Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    Get PDF
    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%

    Improving the healthcare response to domestic violence and abuse in UK primary care: interrupted time series evaluation of a system-level training and support programme.

    Get PDF
    BACKGROUND: It is unknown whether interventions known to improve the healthcare response to domestic violence and abuse (DVA)-a global health concern-are effective outside of a trial. METHODS: An observational interrupted time series study in general practice. All registered women aged 16 and above were eligible for inclusion. In four implementation boroughs' general practices, there was face-to-face, practice-based, clinically relevant DVA training, a prompt in the electronic medical record, reminding clinicians to consider DVA, a simple referral pathway to a named advocate, ensuring direct access for women to specialist services, overseen by a national, health-focused DVA organisation, fostering best practice. The fifth comparator borough had only a session delivered by a local DVA specialist agency at community venues conveying information to clinicians. The primary outcome was the daily number of referrals received by DVA workers per 1000 women registered in a general practice, from 205 general practices, in all five northeast London boroughs. The secondary outcome was recorded new DVA cases in the electronic medical record in two boroughs. Data was analysed using an interrupted time series with a mixed effects Poisson regression model. RESULTS: In the 144 general practices in the four implementation boroughs, there was a significant increase in referrals received by DVA workers-global incidence rate ratio of 30.24 (95% CI 20.55 to 44.77, p < 0.001). There was no increase in the 61 general practices in the other comparator borough (incidence rate ratio of 0.95, 95% CI 0.13 to 6.84, p = 0.959). New DVA cases recorded significantly increased with an incident rate ratio of 1.27 (95% CI 1.09 to 1.48, p < 0.002) in the implementation borough but not in the comparator borough (incidence rate ratio of 1.05, 95% CI 0.82 to 1.34, p = 0.699). CONCLUSIONS: Implementing integrated referral routes, training and system-level support, guided by a national health-focused DVA organisation, outside of a trial setting, was effective and sustainable at scale, over four years (2012 to 2017) increasing referrals to DVA workers and new DVA cases recorded in electronic medical records

    Implementing lean management/Six Sigma in hospitals: beyond empowerment or work intensification?

    Get PDF
    This article analyses a process improvement project based on Lean Six Sigma (LSS) techniques in the emergency department (ED) of a large Australian hospital. We consider perspectives of the clinical and managerial staff involved in the project implementation, its implications for empowerment and work intensification. We find that the project appeared to improve patient flow from the ED to the wards and to have positive implications for some staff. However, these achievements tended to be the result of senior staff using the project to leverage resources and create desirable outcomes, rather than the result of the use of LSS, in particular. We found some evidence of work intensification, but this was attributable to wider systemic issues and budget constraints, rather than being a direct consequence of the use of LSS. We argue that translating LSS from a manufacturing context into the politicised and professionalised context of healthcare changes the usual questions about empowerment or work intensification to questions about the influences of powerful stakeholders
    corecore