7 research outputs found

    Bioprospecting Red Sea Coastal Ecosystems for Culturable Microorganisms and Their Antimicrobial Potential

    Get PDF
    Microorganisms that inhabit unchartered unique soil such as in the highly saline and hot Red Sea lagoons on the Saudi Arabian coastline, represent untapped sources of potentially new bioactive compounds. In this study, a culture-dependent approach was applied to three types of sediments: mangrove mud (MN), microbial mat (MM), and barren soil (BS), collected from Rabigh harbor lagoon (RHL) and Al-Kharrar lagoon (AKL). The isolated bacteria were evaluated for their potential to produce bioactive compounds. The phylogenetic characterization of 251 bacterial isolates based on the 16S rRNA gene sequencing, supported their assignment to five different phyla: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Planctomycetes. Fifteen putative novel species were identified based on a 16S rRNA gene sequence similarity to other strain sequences in the NCBI database, being ≤98%. We demonstrate that 49 of the 251 isolates exhibit the potential to produce antimicrobial compounds. Additionally, at least one type of biosynthetic gene sequence, responsible for the synthesis of secondary metabolites, was recovered from 25 of the 49 isolates. Moreover, 10 of the isolates had a growth inhibition effect towards Staphylococcus aureus, Salmonella typhimurium and Pseudomonas syringae. We report the previously unknown antimicrobial activity of B. borstelensis, P. dendritiformis and M. salipaludis against all three indicator pathogens. Our study demonstrates the evidence of diverse cultured microbes associated with the Red Sea harbor/lagoon environments and their potential to produce antimicrobial compounds

    DESM: portal for microbial knowledge exploration systems

    Get PDF
    Microorganisms produce an enormous variety of chemical compounds. It is of general interest for mi-crobiology and biotechnology researchers to have means to explore information about molecular and genetic basis of functioning of different microor-ganisms and their ability for bioproduction. To en-able such exploration, we compiled 45 topic-specific knowledgebases (KBs) accessible through DESM portal (www.cbrc.kaust.edu.sa/desm). The KBs con-tain information derived through text-mining of PubMed information and complemented by informa-tion data-mined from various other resources (e.g. ChEBI, Entrez Gene, GO, KOBAS, KEGG, UniPath-ways, BioGrid). All PubMed records were indexed us

    In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters

    Get PDF
    Background: The increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions. Results: We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species. Conclusions:B. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems

    Bioprospecting Red Sea Coastal Ecosystems for Culturable Microorganisms and Their Antimicrobial Potential

    No full text
    Microorganisms that inhabit unchartered unique soil such as in the highly saline and hot Red Sea lagoons on the Saudi Arabian coastline, represent untapped sources of potentially new bioactive compounds. In this study, a culture-dependent approach was applied to three types of sediments: mangrove mud (MN), microbial mat (MM), and barren soil (BS), collected from Rabigh harbor lagoon (RHL) and Al-Kharrar lagoon (AKL). The isolated bacteria were evaluated for their potential to produce bioactive compounds. The phylogenetic characterization of 251 bacterial isolates based on the 16S rRNA gene sequencing, supported their assignment to five different phyla: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Planctomycetes. Fifteen putative novel species were identified based on a 16S rRNA gene sequence similarity to other strain sequences in the NCBI database, being ≤98%. We demonstrate that 49 of the 251 isolates exhibit the potential to produce antimicrobial compounds. Additionally, at least one type of biosynthetic gene sequence, responsible for the synthesis of secondary metabolites, was recovered from 25 of the 49 isolates. Moreover, 10 of the isolates had a growth inhibition effect towards Staphylococcus aureus, Salmonella typhimurium and Pseudomonas syringae. We report the previously unknown antimicrobial activity of B. borstelensis, P. dendritiformis and M. salipaludis against all three indicator pathogens. Our study demonstrates the evidence of diverse cultured microbes associated with the Red Sea harbor/lagoon environments and their potential to produce antimicrobial compounds

    Bioactivity of Organic Fermented Soymilk as Next-Generation Prebiotic/Probiotics Mixture

    No full text
    Fermented soymilk (soymilk yogurt) was made by fermenting soymilk with five probiotic bacterial strains (Lactobacillus plantarum ATCC 14917, Lactobacillus casei DSM 20011, Lactobacillus acidophilus ATCC 20552, Lactococcus thermophilus DSM 20259, and Bifidobacterium longum B41409) that were used as monocultures and combined with them as consortia cultures. Seven pathogenic strains, E. coli O157H7, S. aureus As4, S. typhimurium As3, S. shigae As2, L. monocytogenes As1, P. aeruginosa ATCC 27853, and B. cereus Dsmz 345, were used to study the antibacterial activity of fermented soymilk by agar well diffusion assay. Results indicated that Gram-negative pathogenesis was more sensitive to probiotic cultures than Gram-positive pathogenesis. E. coli O15H7, S. typhimirium As3, and Shigella shigae As2 were more sensitive to probiotic cultures, presenting inhibition zone diameters (IZA) ranging from 10 to 20 mm, 12 to 16 mm, and 10 to 16 mm, respectively. At the same time, P. aeruginosa Atcc 27853 showed the lowest (IZA), ranging from 3 mm to 8 mm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined at various concentrations of soymilk fermented by T1, T4, and T5, ranging from 0.031 mg/mL to 1 mg/mL against pathogenic bacterial strains. The sensory properties of FSM were evaluated, and sensory analysis during soymilk fermentation showed significant improvement. The effect of shelf life (storage period) on FSM quality and properties was evaluated; during shelf life (storage period), FSM saved its properties and quality after 28 days of cold storage. Finally, it was stated that the soymilk yogurt can be used as a substitute for buffalo and cow milk for therapeutic feeding in the future
    corecore