31 research outputs found

    Nutritional Stress Induced by Amino Acid Starvation Results in Changes for Slc38 Transporters in Immortalized Hypothalamic Neuronal Cells and Primary Cortex Cells

    No full text
    Amino acid sensing and signaling is vital for cells, and both gene expression and protein levels of amino acid transporters are regulated in response to amino acid availability. Here, the aim was to study the regulation of all members of the SLC38 amino acid transporter family, Slc38a1-11 , in mouse brain cells following amino acid starvation. We reanalyzed microarray data for the immortalized hypothalamic cell line N25/2 subjected to complete amino acid starvation for 1, 2, 3, 5, or 16 h, focusing specifically on the SLC38 family. All 11 Slc38 genes were expressed in the cell line, and Slc38a1, Slc38a2, and Slc38a 7 were significantly upregulated at 5 h and most strongly at 16 h. Here, protein level changes were measured for SLC38A7 and the orphan family member SLC38A11 which has not been studied under different amino acid starvation condition at protein level. At 5 h, no significant alteration on protein level for either SLC38A7 or SLC38A11 could be detected. In addition, primary embryonic cortex cells were deprived of nine amino acids, the most common amino acids transported by the SLC38 family members, for 3 h, 7 h or 12 h, and the gene expression was measured using qPCR. Slc38a1, Slc38a2, Slc38a5, Slc38a6, Slc38a9, and Slc38a10 were upregulated, while Slc38a3 and Slc38a7 were downregulated. Slc38a8 was upregulated at 5 h and downregulated at 12 h. In conclusion, several members from the SLC38 family are regulated depending on amino acid levels and are likely to be involved in amino acid sensing and signaling in brain

    The Neuronal and Peripheral Expressed Membrane-Bound UNC93A Respond to Nutrient Availability in Mice

    No full text
    Many transporters such as the solute carriers belonging to the Major facilitator superfamily Pfam clan are orphans in that their tissue and cellular localization as well as substrate profile and function are still unknown. Here we have characterized the putative solute carrier UNC93A. We aimed to investigate the expression profile on both protein and mRNA level of UNC93A in mouse since it has not been clarified. UNC93A staining was found in cortex, hippocampus and cerebellum. It was found to be expressed in many neurons, but not all, with staining located in close proximity to the plasma membrane. Furthermore, we aimed to extend the starvation data available for Unc93a in hypothalamic cell cultures from mouse. We investigated the Unc93a alterations with focus on amino acid deprivation in embryonic cortex cells from mice as well as 24 h starvation in adult male mice and compared it to recently studied putative and known solute carriers. Unc93a expression was found both in the brain and peripheral organs, in low to moderate levels in the adult mice and was affected by amino acid deprivation in embryonic cortex cultures and starvation in in vivo samples. In conclusion, the membrane-bound UNC93A is expressed in both the brain and peripheral tissues and responds to nutrient availability in mice

    PAT4 is abundantly expressed in excitatory and inhibitory neurons as well as epithelial cells

    Get PDF
    PAT4, the fourth member of the SLC36/proton dependent amino acid transporter (PAT) family, is a high-affinity, low capacity electroneutral transporter of neutral amino acids like proline and tryptophan. It has also been associated with the function of mTORC1, a complex in the mammalian target of rapamycin (mTOR) pathway. We performed in situ hybridization and immunohistological analysis to determine the expression profile of PAT4, as well as an RT-PCR study on tissue from mice exposed to leucine. We performed a phylogenetic analysis to determine the evolutionary origin of PAT4. The in situ hybridization and the immunohistochemistry on mouse brain sections and hypothalamic cells showed abundant PAT4 expression in the mouse brain intracellularly in both inhibitory and excitatory neurons, partially co-localizing with lysosomal markers and epithelial cells lining the ventricles. Its location in epithelial cells around the ventricles indicates a transport of substrates across the blood brain barrier. Phylogenetic analysis showed that PAT4 belongs to an evolutionary old family most likely predating animals, and PAT4 is the oldest member of that family

    The gene expression of the neuronal protein, SLC38A9, changes in mouse brain after in vivo starvation and high-fat diet.

    No full text
    SLC38A9 is characterized as a lysosomal component of the amino acid sensing Ragulator-RAG GTPase complex, controlling the mechanistic target of rapamycin complex 1 (mTORC1). Here, immunohistochemistry was used to map SLC38A9 in mouse brain and staining was detected throughout the brain, in cortex, hypothalamus, thalamus, hippocampus, brainstem and cerebellum. More specifically, immunostaining was found in areas known to be involved in amino acid sensing and signaling pathways e.g. piriform cortex and hypothalamus. SLC38A9 immunoreactivity co-localized with both GABAergic and glutamatergic neurons, but not with astrocytes. SLC38A9 play a key role in the mTORC1 pathway, and therefore we performed in vivo starvation and high-fat diet studies, to measure gene expression alterations in specific brain tissues and in larger brain regions. Following starvation, Slc38a9 was upregulated in brainstem and cortex, and in anterior parts of the brain (Bregma 3.2 to -2.1mm). After high-fat diet, Slc38a9 was specifically upregulated in hypothalamus, while overall downregulation was noticed throughout the brain (Bregma 3.2 to -8.6mm)

    Structural prediction of two novel human atypical SLC transporters, MFSD4A and MFSD9, and their neuroanatomical distribution in mice

    No full text
    Out of the 430 known solute carriers (SLC) in humans, 30% are still orphan transporters regarding structure, distribution or function. Approximately one third of all SLCs belong to the evolutionary conserved and functionally diverse Major Facilitator Superfamily (MFS). Here, we studied the orphan proteins, MFSD4A and MFSD9, which are atypical SLCs of MFS type. Hidden Markov Models were used to identify orthologues in several vertebrates, and human MFSD4A and MFSD9 share high sequence identity with their identified orthologues. MFSD4A and MFSD9 also shared more than 20% sequence identity with other phylogenetically related SLC and MFSD proteins, allowing new family clustering. Homology models displayed 12 transmembrane segments for both proteins, which were predicted to fold into a transporter-shaped structure. Furthermore, we analysed the location of MFSD4A and MFSD9 in adult mouse brain using immunohistochemistry, showing abundant neuronal protein staining. As MFSD4A and MFSD9 are plausible transporters expressed in food regulatory brain areas, we monitored transcriptional changes in several mouse brain areas after 24 hours food-deprivation and eight weeks of high-fat diet, showing that both genes were affected by altered food intake in vivo. In conclusion, we propose MFSD4A and MFSD9 to be novel transporters, belonging to disparate SLC families. Both proteins were located to neurons in mouse brain, and their mRNA expression levels were affected by the diet

    Putative Membrane-Bound Transporters MFSD14A and MFSD14B Are Neuronal and Affected by Nutrient Availability

    Get PDF
    Characterization of orphan transporters is of importance due to their involvement in cellular homeostasis but also in pharmacokinetics and pharmacodynamics. The tissue and cellular localization, as well as function, is still unknown for many of the solute carriers belonging to the major facilitator superfamily (MFS) Pfam clan. Here, we have characterized two putative novel transporters MFSD14A (HIAT1) and MFSD14B (HIATL1) in the mouse central nervous system and found protein staining throughout the adult mouse brain. Both transporters localized to neurons and MFSD14A co-localized with the Golgi marker Giantin in primary embryonic cortex cultures, while MFSD14B staining co-localized with an endoplasmic retention marker, KDEL. Based on phylogenetic clustering analyses, we predict both to have organic substrate profiles, and possible involvement in energy homeostasis. Therefore, we monitored gene regulation changes in mouse embryonic primary cultures after amino acid starvations and found both transporters to be upregulated after 3 h of starvation. Interestingly, in mice subjected to 24 h of food starvation, both transporters were downregulated in the hypothalamus, while Mfsdl4a was also downregulated in the brainstem. In addition, in mice fed a high fat diet (HFD), upregulation of both transporters was seen in the striatum. Both MFSD14A and MFSD14B were intracellular neuronal membrane bound proteins, expressed in the Golgi and Endoplasmic reticulum, affected by both starvation and HFD to varying degree in the mouse brain

    <i>Slc38a9</i> gene expression in mouse brain following starvation and high-fat diet.

    No full text
    <p>Relative <i>Slc38a9</i> mRNA expression ±SD are plotted and compared with controls (Unpaired t-tests, significance adjusted for multiple testing, *p≤0.049375, **p≤0.009975, ***p≤0.001, n represents technical replicates). (a) Control group (white bars), Starved group (light grey bars), n = 6 for both groups and all tissue tested, except n = 5 for starved group in cerebellum, Brainstem (p = 0.0442), Cerebellum (p = 0.4865), Cortex (p = 0.0055), Hypothalamus (p = 0.9803). (b) Control group (white bars), High fat diet group (dark grey bars), n = 6 for both groups and all tissue tested, Brainstem (p = 0.9111), Cerebellum (p = 0.6745), Cortex (p = 0.5967), Hypothalamus (p = 0.0014). (c) Control group (white bars, (region I, II, III and VI, n = 2, region IV, V and VII, n = 3), Starved group (light grey bars, (n = 3 for all regions except for regions I and VII were n = 2)). (I (p = 0.0310), II (p = 0.0297), III (p = 0.0009), IV (p = 0.0159), V (p = 0.0743), VI (p = 0.6162) and VII (p = 0.8486)). (d) Control group (white bars, (region I, II, III and VI, n = 2, region IV, V and VII, n = 3)), High-fat diet group (dark grey bars, (n = 3 for all brain regions except for region V, n = 2)). (p = 0.0016), II (p = 0.0007), III (p<0.0001), IV (p = 0.0006), V (p = 0.0266), VI (p = 0.0124) and VII (p = 0.0151). (e) Representation of the mouse brain displaying the brain regions I-VII, with corresponding Bregma numbers (mm).</p

    SLC38A9 staining co-localize with GABAergic and glutamatergic neurons.

    No full text
    <p>Fluorescence immunohistochemistry (a-d) on mouse brain paraffin embedded sections with SLC38A9 immunostaining in red, protein markers in green and the nuclear marker DAPI in blue. All scale bars are 20μm. White arrows indicate cells with SLC38A9 immunoreactivity and yellow arrows indicate cells with immunoreactivity of the markers. (a) The neuronal marker NeuN co-localizes in the 10th cerebellar lobule (10cb), Bregma -6.72mm. (b) The GABAergic neuronal marker GAD67 co-localized with SLC38A9 in cells close to third ventricle (3V), in anterior hypothalamic area, post (AHP), Bregma -1.22mm. (c) SLC38A9 and the astrocyte marker GFAP do not overlap in the area around third ventricle (3V), reuniens thalamic nucleus (Re), Bregma -0.70mm. (d) The enzyme glutaminase is expressed in glutamatergic neurons and overlap with SLC38A9 in the area B9 serotonin cells (B9), Bregma -4.36mm.</p

    Western blot of the anti-SLC38A9 antibodies.

    No full text
    <p>Western blot was used to verify the antibodies. (a) The blot of the custom made anti-SLC38A9 antibody displayed a band with approximately size of 55kDa, which is ±10kDa of the predicted size of 63kDa of the SLC38A9 protein. (b) The blot of the commercial anti-SLC38A9 (HPA043785) antibody displayed a band with approximately size of 95kDa.</p
    corecore