10 research outputs found

    Leflunomide/hydroxychloroquine combination therapy targets type I IFN-associated proteins in patients with Sjögren's syndrome that show potential to predict and monitor clinical response

    Get PDF
    OBJECTIVES: To assess to what extent leflunomide (LEF) and hydroxychloroquine (HCQ) therapy in patients with primary Sjögren's syndrome (RepurpSS-I) targets type I IFN-associated responses and to study the potential of several interferon associated RNA-based and protein-based biomarkers to predict and monitor treatment. METHODS: In 21 patients treated with LEF/HCQ and 8 patients treated with placebo, blood was drawn at baseline, 8, 16 and 24 weeks. IFN-signatures based on RNA expression of five IFN-associated genes were quantified in circulating mononuclear cells and in whole blood. MxA protein levels were measured in whole blood, and protein levels of CXCL10 and Galectin-9 were quantified in serum. Differences between responders and non-responders were assessed and receiver operating characteristic analysis was used to determine the capacity of baseline expression and early changes (after 8 weeks of treatment) in biomarkers to predict treatment response at the clinical endpoint. RESULTS: IFN-signatures in peripheral blood mononuclear cell and whole blood decreased after 24 weeks of LEF/HCQ treatment, however, changes in IFN signatures only poorly correlated with changes in disease activity. In contrast to baseline IFN signatures, baseline protein concentrations of galectin-9 and decreases in circulating MxA and Galectin-9 were robustly associated with clinical response. Early changes in serum Galectin-9 best predicted clinical response at 24 weeks (area under the curve 0.90). CONCLUSIONS: LEF/HCQ combination therapy targets type-I IFN-associated proteins that are associated with strongly decreased B cell hyperactivity and disease activity. IFN-associated Galectin-9 is a promising biomarker for treatment prediction and monitoring in pSS patients treated with LEF/HCQ.</p

    Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis

    Get PDF
    Abstract Objective MicroRNAs (miRNAs) are regulatory molecules, which have been addressed as potential biomarkers and therapeutic targets in rheumatic diseases. Here, we investigated the miRNA signature in the serum of systemic sclerosis (SSc) patients and we further assessed their expression in early stages of the disease. Methods The levels of 758 miRNAs were evaluated in the serum of 26 SSc patients as compared to 9 healthy controls by using an Openarray platform. Three miRNAs were examined in an additional cohort of 107 SSc patients and 24 healthy donors by single qPCR. MiR-483-5p expression was further analysed in the serum of patients with localized scleroderma (LoS) (n = 22), systemic lupus erythematosus (SLE) (n = 33) and primary Sjogren's syndrome (pSS) (n = 23). The function of miR-483-5p was examined by transfecting miR-483-5p into primary human dermal fibroblasts and pulmonary endothelial cells. Results 30 miRNAs were significantly increased in patients with SSc. Of these, miR-483-5p showed reproducibly higher levels in an independent SSc cohort and was also elevated in patients with preclinical-SSc symptoms (early SSc). Notably, miR-483-5p was not differentially expressed in patients with SLE or pSS, whereas it was up-regulated in LoS, indicating that this miRNA could be involved in the development of skin fibrosis. Consistently, miR-483-5p overexpression in fibroblasts and endothelial cells modulated the expression of fibrosis-related genes. Conclusions Our findings showed that miR-483-5p is up-regulated in the serum of SSc patients, from the early stages of the disease onwards, and indicated its potential function as a fine regulator of fibrosis in SSc

    Increased expression of Fas on group 2 and 3 innate lymphoid cells is associated with an interferon signature in systemic lupus erythematosus and Sjögren's syndrome

    No full text
    The role of innate lymphoid cells (ILCs) in the pathophysiology of rheumatic diseases is emerging. Evidence from animal studies implicate type I IFN, produced by plasmacytoid dendritic cells, to be involved in regulating the survival of group 2 and group 3 ILCs (ILC2s and ILC3s) via the upregulation of Fas (CD95) expression. For the first time, we explored the frequency and phenotype of circulating ILCs in SLE and primary Sjögren's syndrome (pSS) in relationship to the IFN signature. Methods: Frequencies and phenotypes of ILC subsets and plasmacytoid dendritic cells were assessed by flow cytometry in peripheral blood of patients with SLE (n = 20), pSS (n = 20) and healthy controls (n = 17). Patients were stratified by the presence or absence of an IFN signature as assessed by RT-qPCR on circulating mononuclear cells. Results: ILC1 frequencies were increased in peripheral blood of patients with SLE as compared with healthy controls and correlate with disease activity in pSS patients. Overall, the frequencies of ILC2s or ILC3s did not differ between patients with SLE, pSS and healthy controls. However, patients with a high type I IFN signature expressed elevated levels of Fas on ILC2s and ILC3s, which coincided with decreased frequencies of these cells in blood. Conclusion: The presence of a type I IFN signature is related to Fas expression and frequencies of circulating ILC2s and ILC3s in patients with SLE and pSS, potentially altering the homeostatic balance of ILCs

    Increased expression of Fas on group 2 and 3 innate lymphoid cells is associated with an interferon signature in systemic lupus erythematosus and Sjögren's syndrome

    No full text
    The role of innate lymphoid cells (ILCs) in the pathophysiology of rheumatic diseases is emerging. Evidence from animal studies implicate type I IFN, produced by plasmacytoid dendritic cells, to be involved in regulating the survival of group 2 and group 3 ILCs (ILC2s and ILC3s) via the upregulation of Fas (CD95) expression. For the first time, we explored the frequency and phenotype of circulating ILCs in SLE and primary Sjögren's syndrome (pSS) in relationship to the IFN signature. Methods: Frequencies and phenotypes of ILC subsets and plasmacytoid dendritic cells were assessed by flow cytometry in peripheral blood of patients with SLE (n = 20), pSS (n = 20) and healthy controls (n = 17). Patients were stratified by the presence or absence of an IFN signature as assessed by RT-qPCR on circulating mononuclear cells. Results: ILC1 frequencies were increased in peripheral blood of patients with SLE as compared with healthy controls and correlate with disease activity in pSS patients. Overall, the frequencies of ILC2s or ILC3s did not differ between patients with SLE, pSS and healthy controls. However, patients with a high type I IFN signature expressed elevated levels of Fas on ILC2s and ILC3s, which coincided with decreased frequencies of these cells in blood. Conclusion: The presence of a type I IFN signature is related to Fas expression and frequencies of circulating ILC2s and ILC3s in patients with SLE and pSS, potentially altering the homeostatic balance of ILCs

    Circulating small non-coding RNAs reflect IFN status and B cell hyperactivity in patients with primary Sjögren’s syndrome

    Get PDF
    Background Considering the important role of miRNAs in the regulation of post–transcriptional expression of target genes, we investigated circulating small non-coding RNAs (snc)RNA levels in patients with primary Sjögren’s syndrome (pSS). In addition we assessed if serum sncRNA levels can be used to differentiate patients with specific disease features. Methods Serum RNA was isolated from 37 pSS patients as well as 21 patients with incomplete Sjögren’s Syndrome (iSS) and 17 healthy controls (HC) allocated to two independent cohorts: discovery and validation. OpenArray profiling of 758 sncRNAs was performed in the discovery cohort. Selected sncRNAs were measured in the validation cohort using single-assay RT-qPCR. In addition, unsupervised hierarchical clustering was performed within the pSS group. Results Ten sncRNAs were differentially expressed between the groups in the array. In the validation cohort, we confirmed the increased expression of U6-snRNA and miR-661 in the iSS group as compared to HC. We were unable to validate differential expression of any miRNAs in the pSS group. However, within this group several miRNAs correlated with laboratory parameters. Unsupervised clustering distinguished three clusters of pSS patients. Patients in one cluster showed significantly higher serum IgG, prevalence of anti-SSB autoantibodies, IFN-score, and decreased leukocyte counts compared to the two other clusters. Conclusion We were unable to identify any serum sncRNAs with differential expression in pSS patients. However, we show that circulating miRNA levels are associated with disease parameters in pSS patients and can be used to distinguish pSS patients with more severe B cell hyperactivity. As several of these miRNAs are implicated in the regulation of B cells, they may play a role in the perpetuation of the disease

    Dysregulated miRNome of plasmacytoid dendritic cells from patients with Sjogren's syndrome is associated with processes at the centre of their function

    No full text
    Objective: A considerable body of evidence supports a role for type-I IFN in the pathogenesis of primary SS (pSS). As plasmacytoid dendritic cells (pDCs) are a major source of type-I IFN, we investigated their molecular regulation by measuring expression of a large set of miRNAs. Methods: pDCs were isolated from peripheral blood of pSS patients (n = 30) and healthy controls (n = 16) divided into two independent cohorts (discovery and replication). Screening of 758 miRNAs was assessed by an OpenArray quantitative PCR-based technique; replication of a set of identified miRNAs was performed by custom array. Functional annotation of miRNA targets was performed using pathway enrichment. Novel targets of miR-29a and miR-29c were identified using a proteomic approach (stable isotope labelling with amino acids in cell culture). Results: In the discovery cohort, 20 miRNAs were differentially expressed in pSS pDCs compared with healthy control pDCs. Of these, differential expression of 10 miRNAs was confirmed in the replication cohort. The dysregulated miRNAs were involved in phosphoinositide 3-kinase-Ak strain transforming and mammalian target of rapamycin signalling, as well as regulation of cell death. In addition, a set of novel protein targets of miR-29a and miR-29c were identified, including five targets that were regulated by both miRs. Conclusion: The dysregulated miRNome in pDCs of patients with pSS is associated with aberrant regulation of processes at the centre of pDC function, including type-I IFN production and cell death. As miR-29a and miR-29c are pro-apoptotic factors and several of the novel targets identified here are regulators of apoptosis, their downregulation in patients with pSS is associated with enhanced pDC survival

    Plasmacytoid DCs From Patients With Sjögren's Syndrome Are Transcriptionally Primed for Enhanced Pro-inflammatory Cytokine Production

    No full text
    Primary Sjögren's syndrome (pSS) is a systemic auto-immune disease typified by dryness of the mouth and eyes. A majority of patients with pSS have a type-I interferon (IFN)-signature, which is defined as the increased expression of IFN-induced genes in circulating immune cells and is associated with increased disease activity. As plasmacytoid dendritic cells (pDC) are the premier type-I IFN-producing cells and are present at the site of inflammation, they are thought to play a significant role in pSS pathogenesis. Considering the lack of data on pDC regulation and function in pSS patients, we here provided the first in-depth molecular characterization of pSS pDCs. In addition, a group of patients with non-Sjögren's sicca (nSS) was included; these poorly studied patients suffer from complaints similar to pSS patients, but are not diagnosed with Sjögren's syndrome. We isolated circulating pDCs from two independent cohorts of patients and controls (each n = 31) and performed RNA-sequencing, after which data-driven networks and modular analysis were used to identify robustly reproducible transcriptional "signatures" of differential and co-expressed genes. Four signatures were identified, including an IFN-induced gene signature and a ribosomal protein gene-signature, that indicated pDC activation. Comparison with a dataset of in vitro activated pDCs showed that pSS pDCs have higher expression of many genes also upregulated upon pDC activation. Corroborating this transcriptional profile, pSS pDCs produced higher levels of pro-inflammatory cytokines, including type-I IFN, upon in vitro stimulation with endosomal Toll-like receptor ligands. In this setting, cytokine production was associated with expression of hub-genes from the IFN-induced and ribosomal protein gene-signatures, indicating that the transcriptional profile of pSS pDCs underlies their enhanced cytokine production. In all transcriptional analyses, nSS patients formed an intermediate group in which some patients were molecularly similar to pSS patients. Furthermore, we used the identified transcriptional signatures to develop a discriminative classifier for molecular stratification of patients with sicca. Altogether, our data provide in-depth characterization of the aberrant regulation of pDCs from patients with nSS and pSS and substantiate their perceived role in the immunopathology of pSS, supporting studies that target pDCs, type-I IFNs, or IFN-signaling in pSS

    MicroRNA-130a Contributes to Type-2 Classical DC-activation in Sjogren's Syndrome by Targeting Mitogen- and Stress-Activated Protein Kinase-1

    No full text
    Objectives: Considering the critical role of microRNAs (miRNAs) in regulation of cell activation, we investigated their role in circulating type-2 conventional dendritic cells (cDC2s) of patients with primary Sjögren’s syndrome (pSS) compared to healthy controls (HC). Methods: CD1c-expressing cDC2s were isolated from peripheral blood. A discovery cohort (15 pSS, 6 HC) was used to screen the expression of 758 miRNAs and a replication cohort (15 pSS, 11 HC) was used to confirm differential expression of 18 identified targets. Novel targets for two replicated miRNAs were identified by SILAC in HEK-293T cells and validated in primary cDC2s. Differences in cytokine production between pSS and HC cDC2s were evaluated by intracellular flow-cytometry. cDC2s were cultured in the presence of MSK1-inhibitors to investigate their effect on cytokine production. Results: Expression of miR-130a and miR-708 was significantly decreased in cDC2s from pSS patients compared to HC in both cohorts, and both miRNAs were downregulated upon stimulation via endosomal TLRs. Upstream mediator of cytokine production MSK1 was identified as a novel target of miR-130a and overexpression of miR-130a reduced MSK1 expression in cDC2s. pSS cDC2s showed higher MSK1 expression and an increased fraction of IL-12 and TNF-α-producing cells. MSK1-inhibition reduced cDC2 activation and production of IL-12, TNF-α, and IL-6. Conclusions: The decreased expression of miR-130a and miR-708 in pSS cDC2s seems to reflect cell activation. miR-130a targets MSK1, which regulates pro-inflammatory cytokine production, and we provide proof-of-concept for MSK1-inhibition as a therapeutic avenue to impede cDC2 activity in pSS
    corecore