62 research outputs found

    Studying synthesis confinement effects on the internal structure of nanogels in computer simulations

    Full text link
    We study the effects of droplet finite size on the structure of nanogel particles synthesized by random crosslinking of molecular polymers diluted in nanoemulsions. For this, we use a bead-spring computer model of polymer-like structures that mimics the confined random crosslinking process corresponding to irradiation- or electrochemically-induced crosslinking methods. Our results indicate that random crosslinking under strong confinement can lead to unusual nanogel internal structures, with a central region less dense than the external one, whereas under moderate confinement the resulting structure has a denser central region. We analyze the topology of the polymer networks forming nanogel particles with both types of architectures, their overall structural parameters, their response to the quality of the solvent and compare the cases of non-ionic and ionic systems

    The generalized identification of truly interfacial molecules (ITIM) algorithm for nonplanar interfaces

    Get PDF
    We present a generalized version of the ITIM algorithm for the identification of interfacial molecules, which is able to treat arbitrarily shaped interfaces. The algorithm exploits the similarities between the concept of probe sphere used in ITIM and the circumsphere criterion used in the α-shapes approach, and can be regarded either as a reference-frame independent version of the former, or as an extended version of the latter that includes the atomic excluded volume. The new algorithm is applied to compute the intrinsic orientational order parameters of water around a dodecylphosphocholine and a cholic acid micelle in aqueous environment, and to the identification of solvent-reachable sites in four model structures for soot. The additional algorithm introduced for the calculation of intrinsic density profiles in arbitrary geometries proved to be extremely useful also for planar interfaces, as it allows to solve the paradox of smeared intrinsic profiles far from the interface. © 2013 American Institute of Physics

    Suspensions of magnetic nanogels at zero field: equilibrium structural properties

    Full text link
    Magnetic nanogels represent a cutting edge of magnetic soft matter research due to their numerous potential applications. Here, using Langevin dynamics simulations, we analyse the influence of magnetic nanogel concentration and embedded magnetic particle interactions on the self-assembly of magnetic nanogels at zero field. For this, we calculated radial distribution functions and structure factors for nanogels and magnetic particles within them. We found that, in comparison to suspensions of free magnetic nanoparticles, where the self-assembly is already observed if the interparticle interaction strength exceeds the thermal fluctuations by approximately a factor of three, self-assembly of magnetic nanogels only takes place by increasing such ratio above six. This magnetic nanogel self-assembly is realised by means of favourable close contacts between magnetic nanoparticles from different nanogels. It turns out that for high values of interparticle interactions, corresponding to the formation of internal rings in isolated nanogels, in their suspensions larger magnetic particle clusters with lower elastic penalty can be formed by involving different nanogels. Finally, we show that when the self-assembly of these nanogels takes place, it has a drastic effect on the structural properties even if the volume fraction of magnetic nanoparticles is low.Comment: International Conference on Magnetic Fluids - ICMF 201

    The intrinsic structure of the interface of partially miscible fluids : an application to ionic liquids

    Get PDF
    We investigate by means of Molecular Dynamics simulations how the intrinsic sur- face structure of liquid/liquid interfaces involving ionic liquids depends on the opposite phase of varying polarity. We study 1-n-butyl-3-methylimidazolium hexa uorophos- phate (BMIM PF 6 ) and 1-n-butyl-3-methylimidazolium bis(tri uoromethylsulfonyl)imid (BMIM NTf 2 ). The opposite phase is either cyclohexane or water, but as a reference, IL { vacuum interfaces are also studied. We combine a distance-based cluster search algorithm with the ITIM intrinsic analyzing method to separate liquid phases showing non-negligible mutual miscibility and to identify atoms residing at the instantaneous surface. In contrast to the well structured surface of IL { vacuum systems, at liq- uid/liquid interfaces of ILs density correlations, ionic associations and orientational preferences are all weakened, this eect being much more pronounced when the other species is water. In such systems we observe a drastic reduction in the presence of the cation at the surface and an increase of appearance of polar moieties (of both the cations and anions) leading to decreased apolar character of the interface. Furthermore, cations are mostly found to turn with their butyl chains toward the bulk while having their methyl groups sticking towards water. Anion-cation associations are reduced and partially replaced by water-anion and rarely also water-cation associations

    Magnetostriction in elastomers with mixtures of magnetically hard and soft microparticles: effects of non-linear magnetization and matrix rigidity

    Full text link
    In this contribution a magnetoactive elastomer (MAE) of mixed content, i.e., a polymer matrix filled with a mixture of magnetically soft and magnetically hard spherical particles, is considered. The object we focus at is an elementary unit of this composite, for which we take a set consisting of a permanent spherical micromagnet surrounded by an elastomer layer filled with magnetically soft microparticles. We present a comparative treatment of this unit from two essentially different viewpoints. The first one is a coarse-grained molecular dynamics simulation model, which presents the composite as a bead-spring assembly and is able to deliver information of all the microstructural changes of the assembly. The second approach is entirely based on the continuum magnetomechanical description of the system, whose direct yield is the macroscopic field-induced response of the MAE to external field, as this model ignores all the microstructural details of the magnetization process. We find that, differing in certain details, both frameworks are coherent in predicting that a unit comprising magnetically soft and hard particles may display a non-trivial re-entrant (prolate/oblate/prolate) axial deformation under variation of the applied field strength. The flexibility of the proposed combination of the two complementary frameworks enables us to look deeper into the manifestation of the magnetic response: with respect to the magnetically soft particles, we compare the linear regime of magnetization to that with saturation, which we describe by the Fr\"{o}hlich-Kennelly approximation; with respect to the polymer matrix, we analyze the dependence of the re-rentrant deformation on its rigidity

    Diffusion of single active-dipolar cubes in applied fields

    Full text link
    "Active matter" refers to a class of out-of-equilibrium systems whose ability to transform environmental energy to kinetic energy is sought after in multiple fields of science and at very different length scales. At microscopic scales, an important challenge lies in overpowering the particles reorientation due to thermal fluctuations, especially in nano-sized systems, to create non-random, directed motion, needed for a wide range of possible applications. In this article, we employ molecular dynamics simulations to show that the diffusion of a self-propelling dipolar nanocube can be enhanced in a pre-defined direction with the help of a moderately strong applied magnetic field, overruling the effect of the thermal fluctuations. Furthermore, we show that the direction of diffusion is given by the orientation of the net internal magnetisation of the cube. This can be used to determine experimentally the latter in synthetically crafted active cobalt ferrite nanocubes.Comment: 10 pages, 7 Figures, 1 Tabl
    corecore