107 research outputs found

    Nanomedicines design:Approaches towards the imaging and therapy of brain tumours

    Get PDF

    Directed Molecular Stacking for Engineered Fluorescent Three-Dimensional Reduced Graphene Oxide and Coronene Frameworks

    Get PDF
    [EN] Three‐dimensional fluorescent graphene frameworks with controlled porous morphologies are of significant importance for practical applications reliant on controlled structural and electronic properties, such as organic electronics and photochemistry. Here we report a synthetically accessible approach concerning directed aromatic stacking interactions to give rise to new fluorogenic 3D frameworks with tuneable porosities achieved through molecular variations. The binding interactions between the graphene‐like domains present in the in situ‐formed reduced graphene oxide (rGO) with functional porphyrin molecules lead to new hybrids via an unprecedented solvothermal reaction. Functional free‐base porphyrins featuring perfluorinated aryl groups or hexyl chains at their meso‐ and β‐positions were employed in turn to act as directing entities for the assembly of new graphene‐based and foam‐like frameworks and of their corresponding coronene‐based hybrids. Investigations in the dispersed phase and in thin‐film by XPS, SEM and FLIM shed light onto the nature of the aromatic stacking within functional rGO frameworks (denoted rGOFs) which was then modelled semi‐empirically and by DFT calculations. The pore sizes of the new emerging reduced graphene oxide hybrids are tuneable at the molecular level and mediated by the bonding forces with the functional porphyrins acting as the “molecular glue”. Single crystal X‐ray crystallography described the stacking of a perfluorinated porphyrin with coronene, which can be employed as a molecular model for understanding the local aromatic stacking order and charge transfer interactions within these rGOFs for the first time. This opens up a new route to controllable 3D framework morphologies and pore size from the Ångstrom to the micrometre scale. Theoretical modelling showed that the porosity of these materials is mainly due to the controlled inter‐planar distance between the rGO, coronene or graphene sheets. The host‐guest chemistry involves the porphyrins acting as guests held through π‐π stacking, as demonstrated by XPS. The objective of this study is also to shed light into the fundamental localised electronic and energy transfer properties in these new molecularly engineered porous and fluorogenic architectures, aiming in turn to understand how functional porphyrins may exert stacking control over the notoriously disordered local structure present in porous reduced graphene oxide fragments. By tuning the porosity and the distance between the graphene sheets using aromatic stacking with porphyrins, it is also possible to tune the electronic structure of the final nanohybrid material, as indicated by FLIM experiments on thin films. Such nanohybrids with highly controlled pores dimensions and morphologies open the way to new design and assembly of storage devices and applications incorporating π‐conjugated molecules and materials and their π‐stacks may be relevant towards selective separation membranes, water purification and biosensing applications.S.I.P. and S.W.B. thank The Royal Society and STFC for funding. B.Y.M. thanks the University of Bath for a studentship (ORS). D.G.C. thanks the Fundación General CSIC for funding (ComFuturo Program). Dr. Jose A. Ribeiro Martins, Professors Jeremy K. M. Sanders and Paul Raithby are acknowledged for training, helpful discussions and porphyrin supramolecular chemistry. The S.I.P. group thanks the EPSRC for funding to the Centre of Graphene Science (EP/K017160/1) and to the Centre for Doctoral Training in Sustainable Chemical Technologies (EP/L016354/1). The authors thank EPSRC National Service for Mass Spectrometry at Swansea and EPSRC National Service for Crystallography at Southampton for data collection. The authors also acknowledge the ERC for the Consolidator Grant O2SENSE (617107, 2014–2019)

    Anti-staphylococcal activity and mode of action of thioridazine photoproducts

    Get PDF
    Antibiotic resistance became an increasing risk for population health threatening our ability to fight infectious diseases. The objective of this study was to evaluate the activity of laser irradiated thioridazine (TZ) against clinically-relevant bacteria in view to fight antibiotic resistance. TZ in ultrapure water solutions was irradiated (1–240 min) with 266 nm pulsed laser radiation. Irradiated solutions were characterized by UV–Vis and FTIR absorption spectroscopy, thin layer chromatography, laser-induced fluorescence, and dynamic surface tension measurements. Molecular docking studies were made to evaluate the molecular mechanisms of photoproducts action against Staphylococcus aureus and MRSA. More general, solutions were evaluated for their antimicrobial and efflux inhibitory activity against a panel of bacteria of clinical relevance. We observed an enhanced antimicrobial activity of TZ photoproducts against Gram-positive bacteria. This was higher than ciprofloxacin effects for methicillin- and ciprofloxacin-resistant Staphylococcus aureus. Molecular docking showed the Penicillin-binding proteins PBP3 and PBP2a inhibition by sulforidazine as a possible mechanism of action against Staphylococcus aureus and MRSA strains, respectively. Irradiated TZ reveals possible advantages in the treatment of infectious diseases produced by antibiotic-resistant Gram-positive bacteria. TZ repurposing and its photoproducts, obtained by laser irradiation, show accelerated and low-costs of development if compared to chemical synthesis.publishersversionpublishe

    Explorations into peptide nucleic acid contrast agents as emerging scaffolds for breakthrough solutions in medical imaging and diagnosis

    Get PDF
    Peptide nucleic acids (PNAs, nucleic acid analogues with a peptide backbone rather than a phosphoribosyl backbone) have emerged as promising chemical agents in antigene or antisense therapeutics, as splicing modulators or in gene editing. Their main benefits, compared to DNA or RNA agents, are their biochemical stability and the lack of negative charges throughout the backbone, leading to negligible electrostatic interaction with the strand with which they are hybridizing. As a result, hybridization of PNA strands with DNA or RNA strands leads to higher binding energies and melting temperatures. A lack of natural transporters, however, necessitates the formation of PNA-containing chimeras or the formulation of nanoparticular cell delivery methods. Here, we set out to explore the progress made in using imaging agents based on PNAs in diagnostic applications and highlight selected developments and challenges

    Self-Assembled Materials Incorporating Functional Porphyrins and Carbon Nanoplatforms as Building Blocks for Photovoltaic Energy Applications.

    Get PDF
    As a primary goal, this review highlights the role of supramolecular interactions in the assembly of new sustainable materials incorporating functional porphyrins and carbon nanoplatforms as building blocks for photovoltaics advancements

    Investigations into the reactivity of lithium indenyl with alpha diimines with chlorinated backbones and formation of related functional ligands and metal complexes

    Get PDF
    Reaction between lithium indenyl and a chlorine substituted alpha diimine of the form [{Cl(NPh)2}C)]2 unexpectedly yielded the corresponding NH rearranged derivative [PhN(H)C(C9H6)]2 (1) rather than the predicted symmetrical α-diimine. This compound 1 was characterised by 1H NMR, 13C{1H} NMR and mass spectrometry, and additionally by X-ray diffraction. It was found that 1 was the first indene-substituted and symmetric secondary amine which was also highly fluorescent in DMSO. The reactivity of 1 towards simple inorganic and organometallic transition metals precursors based on the MX2 fragments, where M = Group 10 metals and X = halides or methyl groups, has been investigated. Surprisingly, the reaction with [PtMe2(COD)] led to the coupling reaction between the indenyl groups incorporated at the C-C ligand backbone and a new ligand (2) was discovered, in an attempt to synthesise the metal-linked diamine. Single crystal X-ray diffraction studies confirm this compound 2 to feature coupled indenyl residues and delocalised C-C bonds in the solid state. Structural authentication by X-ray crystallography showed compound 2 to be a very rare example of flat and extended aromatic organic molecule and mass spectrometry, IR and NMR spectroscopy were carried out to gain further insight into the solid state and solution phase structures. Further experiments to synthesise analogues of [PhN(H)C(Ind)]2 aiming to shift a likely equilibrium in favour the imine tautomer, by introducing bulky ortho substituents onto the benzene ring (R = Me, iPr) showed the presence of the imine tautomer to be increasingly favoured in 1H NMR spectra, with an increase in the steric bulk of the ortho substituents. However, the enamine tautomer is still observed to a minor extent even with isopropyl substituents and yields of these desired compounds were low on steric grounds.</p

    Extracellular Electrophysiology in the Prostate Cancer Cell Model PC-3

    Get PDF
    Although prostate cancer is one of the most common cancers in the male population, its basic biological function at a cellular level remains to be fully understood. This lack of in depth understanding of its physiology significantly hinders the development of new, targeted and more effective treatment strategies. Whilst electrophysiological studies can provide in depth analysis, the possibility of recording electrical activity in large populations of non-neuronal cells remains a significant challenge, even harder to address in the picoAmpere-range, which is typical of cellular level electrical activities. In this paper, we present the measurement and characterization of electrical activity of populations of prostate cancer cells PC-3, demonstrating for the first time a meaningful electrical pattern. The low noise system used comprises a multi-electrode array (MEA) with circular gold electrodes on silicon oxide substrates. The extracellular capacitive currents present two standard patterns: an asynchronous sporadic pattern and a synchronous quasi-periodic biphasic spike pattern. An amplitude of ±150 pA, a width between 50–300 ms and an inter-spike interval around 0.5 Hz characterize the quasi-periodic spikes. Our experiments using treatment of cells with Gd3+, known as an inhibitor for the Ca2+ exchanges, suggest that the quasi-periodic signals originate from Ca2 channels. After adding the Gd3+ to a population of living PC-3 cells, their electrical activity considerably decreased; once the culture was washed, thus eliminating the Gd3+ containing medium and addition of fresh cellular growth medium, the PC-3 cells recovered their normal electrical activity. Cellular viability plots have been carried out, demonstrating that the PC-3 cells remain viable after the use of Gd3+, on the timescale of this experiment. Hence, this experimental work suggests that Ca2+ is significantly affecting the electrophysiological communication pattern among PC-3 cell populations. Our measuring platform opens up new avenues for real time and highly sensitive investigations of prostate cancer signalling pathways.Ministerio de Ciencia e Innovación TEC2014-54449-C3-2-R, BIOLO
    corecore