351 research outputs found
Systematic Derivation of Amplitude Equations and Normal Forms for Dynamical Systems
We present a systematic approach to deriving normal forms and related
amplitude equations for flows and discrete dynamics on the center manifold of a
dynamical system at local bifurcations and unfoldings of these. We derive a
general, explicit recurrence relation that completely determines the amplitude
equation and the associated transformation from amplitudes to physical space.
At any order, the relation provides explicit expressions for all the
nonvanishing coefficients of the amplitude equation together with
straightforward linear equations for the coefficients of the transformation.
The recurrence relation therefore provides all the machinery needed to solve a
given physical problem in physical terms through an amplitude equation. The new
result applies to any local bifurcation of a flow or map for which all the
critical eigenvalues are semisimple i.e. have Riesz index unity). The method is
an efficient and rigorous alternative to more intuitive approaches in terms of
multiple time scales. We illustrate the use of the method by deriving amplitude
equations and associated transformations for the most common simple
bifurcations in flows and iterated maps. The results are expressed in tables in
a form that can be immediately applied to specific problems.Comment: 40 pages, 1 figure, 4 tables. Submitted to Chaos. Please address any
correspondence by email to [email protected]
Radial sine-Gordon kinks as sources of fast breathers
We consider radial sine-Gordon kinks in two, three and higher dimensions. A
full two dimensional simulation showing that azimuthal perturbations remain
small allows to reduce the problem to the one dimensional radial sine-Gordon
equation. We solve this equation on an interval and absorb all
outgoing radiation. Before collision the kink is well described by a simple law
derived from the conservation of energy. In two dimensions for , the
collision disintegrates the kink into a fast breather while for we
obtain a kink-breather meta-stable state where breathers are shed at each kink
"return". In three and higher dimensions a kink-pulson state appears for
small . The three states then exist as shown by a study of the
parameter space. On the application side, the kink disintegration opens the way
for new types of terahertz microwave generators
Close binary evolution. III. Impact of tides, wind magnetic braking, and internal angular momentum transport
Massive stars with solar metallicity lose important amounts of rotational
angular momentum through their winds. When a magnetic field is present at the
surface of a star, efficient angular momentum losses can still be achieved even
when the mass-loss rate is very modest, at lower metallicities, or for
lower-initial-mass stars. In a close binary system, the effect of wind magnetic
braking also interacts with the influence of tides, resulting in a complex
evolution of rotation. We study the interactions between the process of wind
magnetic braking and tides in close binary systems. We discuss the evolution of
a 10 M star in a close binary system with a 7 M companion using
the Geneva stellar evolution code. The initial orbital period is 1.2 days. The
10 M star has a surface magnetic field of 1 kG. Various initial
rotations are considered. We use two different approaches for the internal
angular momentum transport. In one of them, angular momentum is transported by
shear and meridional currents. In the other, a strong internal magnetic field
imposes nearly perfect solid-body rotation. The evolution of the primary is
computed until the first mass-transfer episode occurs. The cases of different
values for the magnetic fields and for various orbital periods and mass ratios
are briefly discussed. We show that, independently of the initial rotation rate
of the primary and the efficiency of the internal angular momentum transport,
the surface rotation of the primary will converge, in a time that is short with
respect to the main-sequence lifetime, towards a slowly evolving velocity that
is different from the synchronization velocity. (abridged).Comment: 11 pages, 13 figures, accepted for publication in Astronomy and
Astrophysic
Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAP-25
AbstractProtein kinase A (PKA) is a key regulator of neurosecretion, but the molecular targets remain elusive. We combined pharmacological manipulations of kinase and phosphatase activities with mutational studies on the exocytotic machinery driving fusion of catecholamine-containing vesicles from chromaffin cells. We found that constitutive PKA activity was necessary to maintain a large number of vesicles in the release-ready, so-called primed, state, whereas calcineurin (protein phosphatase 2B) activity antagonized this effect. Overexpression of the SNARE protein SNAP-25a mutated in a PKA phosphorylation site (Thr-138) eliminated the effect of PKA inhibitors on the vesicle priming process. Another, unidentified, PKA target regulated the relative size of two different primed vesicle pools that are distinguished by their release kinetics. Overexpression of the SNAP-25b isoform increased the size of both primed vesicle pools by a factor of two, and mutations in the conserved Thr-138 site had similar effects as in the a isoform
Deltaproteobacteria and Spirochaetes-Like Bacteria Are Abundant Putative Mercury Methylators in Oxygen-Deficient Water and Marine Particles in the Baltic Sea
Methylmercury (MeHg), a neurotoxic compound biomagnifying in aquatic food webs, can be a threat to human health via fish consumption. However, the composition and distribution of the microbial communities mediating the methylation of mercury (Hg) to MeHg in marine systems remain largely unknown. In order to fill this knowledge gap, we used the Baltic Sea Reference Metagenome (BARM) dataset to study the abundance and distribution of the genes involved in Hg methylation (thehgcABgene cluster). We determined the relative abundance of thehgcABgenes and their taxonomic identity in 81 brackish metagenomes that cover spatial, seasonal and redox variability in the Baltic Sea water column. ThehgcABgenes were predominantly detected in anoxic water, but somehgcABgenes were also detected in hypoxic and normoxic waters. Phylogenetic analysis identified putative Hg methylators within Deltaproteobacteria, in oxygen-deficient water layers, but also Spirochaetes-like and Kiritimatiellaeota-like bacteria. Higher relative quantities ofhgcABgenes were found in metagenomes from marine particles compared to free-living communities in anoxic water, suggesting that such particles are hotspot habitats for Hg methylators in oxygen-depleted seawater. Altogether, our work unveils the diversity of the microorganisms with the potential to mediate MeHg production in the Baltic Sea and pinpoint the important ecological niches for these microorganisms within the marine water column
Isotope effect in impure high T_c superconductors
The influence of various kinds of impurities on the isotope shift exponent
\alpha of high temperature superconductors has been studied. In these materials
the dopant impurities, like Sr in La_{2-x}Sr_xCuO_4, play different role and
usually occupy different sites than impurities like Zn, Fe, Ni {\it etc}
intentionally introduced into the system to study its superconducting
properties.
In the paper the in-plane and out-of-plane impurities present in layered
superconductors have been considered. They differently affect the
superconducting transition temperature T_c. The relative change of isotope
shift coefficient, however, is an universal function of T_c/T_{c0} (T_{c0}
reffers to impurity free system) {\it i.e.} for angle independent scattering
rate and density of states function it does not depend whether the change of
T_c is due to in- or out-of-plane impurities. The role of the anisotropic
impurity scattering in changing oxygen isotope coefficient of superconductors
with various symmetries of the order parameter is elucidated. The comparison of
the calculated and experimental dependence of \alpha/\alpha_0, where \alpha_0
is the clean system isotope shift coefficient, on T_c/T_{c0} is presented for a
number of cases studied.
The changes of \alpha calculated within stripe model of superconductivity in
copper oxides resonably well describe the data on
La_{1.8}Sr_{0.2}Cu_{1-x}(Fe,Ni)_xO_4, without any fitting parameters.Comment: 8 pages, 6 figures, Phys. Rev. B67 (2003) accepte
Multi-Decadal Decline of Mercury in the North Atlantic Atmosphere Explained by Changing Subsurface Seawater Concentrations
[1] We analyze 1977–2010 trends in atmospheric mercury (Hg) from 21 ship cruises over the North Atlantic (NA) and 15 over the South Atlantic (SA). We find a steep 1990–2009 decline of −0.046 ± 0.010 ng m−3 a−1 (−2.5% a−1) over the NA (steeper than at Northern Hemispheric land sites) but no significant decline over the SA. Surface water Hg0 measurements in the NA show a decline of −5.7% a−1since 1999, and limited subsurface ocean data show an ∼80% decline from 1980 to present. We use a coupled global atmosphere-ocean model to show that the decline in NA atmospheric concentrations can be explained by decreasing oceanic evasion from the NA driven by declining subsurface water Hg concentrations. We speculate that this large historical decline of Hg in the NA Ocean could have been caused by decreasing Hg inputs from rivers and wastewater and by changes in the oxidant chemistry of the atmospheric marine boundary layer.Engineering and Applied Science
- …