15 research outputs found

    Tideglusib Rescues Neurite Pathology of SPG11 iPSC Derived Cortical Neurons

    Get PDF
    Mutations in SPG11 cause a complicated autosomal recessive form of hereditary spastic paraplegia (HSP). Mechanistically, there are indications for the dysregulation of the GSK3β/βCat signaling pathway in SPG11. In this study, we tested the therapeutic potential of the GSK3β inhibitor, tideglusib, to rescue neurodegeneration associated characteristics in an induced pluripotent stem cells (iPSCs) derived neuronal model from SPG11 patients and matched healthy controls as well as a CRISPR-Cas9 mediated SPG11 knock-out line and respective control. SPG11-iPSC derived cortical neurons, as well as the genome edited neurons exhibited shorter and less complex neurites than controls. Administration of tideglusib to these lines led to the rescue of neuritic impairments. Moreover, the treatment restored increased cell death and ameliorated the membranous inclusions in iPSC derived SPG11 neurons. Our results provide a first evidence for the rescue of neurite pathology in SPG11-HSP by tideglusib. The current lack of disease-modifying treatments for SPG11 and related types of complicated HSP renders tideglusib a candidate compound for future clinical application

    Generation of a homozygous and a heterozygous SNCA gene knockout human-induced pluripotent stem cell line by CRISPR/Cas9 mediated allele-specific tuning of SNCA expression

    Get PDF
    Aggregation of alpha-synuclein (aSyn) is closely linked to Parkinson's disease, probably due to the loss of physiological functions and/or gain of toxic functions of aggregated aSyn. Significant efforts have been made elucidating the physiological structure and function of aSyn, however, with limited success thus far in human-derived cells, partly because of restricted resources. Here, we developed two human-induced pluripotent stem cell lines using CRISPR/Cas9-mediated allele-specific frame-shift deletion of the aSyn encoding gene SNCA, resulting in homo- and heterozygous SNCA knockout. The generated cell lines are promising cellular tools for studying aSyn dosage-dependent functions and structural alterations in human neural cells

    CRISPR/Cas9-mediated generation of hESC lines with homozygote and heterozygote p.R331W mutation in CTBP1 to model HADDTS syndrome

    Get PDF
    C-terminal Binding Protein 1 (CTBP1) is a ubiquitously expressed transcriptional co-repressor and membrane trafficking regulator. A recurrent de novo c.991C>T mutation in CTBP1 leads to expression of p.R331W CTBP1 and causes hypotonia, ataxia, developmental delay, and tooth enamel defects syndrome (HADDTS), a rare early onset neurodevelopmental disorder. We generated hESCs lines with heterozygote and homozygote c.991C>T in CTBP1 using CRISPR/Cas9 genome editing and validated them for genetic integrity, off-target mutations, and pluripotency. They will be useful for investigation of HADDTS pathophysiology and for screening for potential therapeutics

    Tideglusib Rescues Neurite Pathology of SPG11 iPSC Derived Cortical Neurons

    Get PDF
    Mutations in SPG11 cause a complicated autosomal recessive form of hereditary spastic paraplegia (HSP). Mechanistically, there are indications for the dysregulation of the GSK3β/βCat signaling pathway in SPG11. In this study, we tested the therapeutic potential of the GSK3β inhibitor, tideglusib, to rescue neurodegeneration associated characteristics in an induced pluripotent stem cells (iPSCs) derived neuronal model from SPG11 patients and matched healthy controls as well as a CRISPR-Cas9 mediated SPG11 knock-out line and respective control. SPG11-iPSC derived cortical neurons, as well as the genome edited neurons exhibited shorter and less complex neurites than controls. Administration of tideglusib to these lines led to the rescue of neuritic impairments. Moreover, the treatment restored increased cell death and ameliorated the membranous inclusions in iPSC derived SPG11 neurons. Our results provide a first evidence for the rescue of neurite pathology in SPG11-HSP by tideglusib. The current lack of disease-modifying treatments for SPG11 and related types of complicated HSP renders tideglusib a candidate compound for future clinical application

    Pathogenic SCN2A variants cause early-stage dysfunction in patient-derived neurons

    Full text link
    Pathogenic heterozygous variants in SCN2A, which encodes the neuronal sodium channel NaV1.2, cause different types of epilepsy or intellectual disability (ID)/autism without seizures. Previous studies using mouse models or heterologous systems suggest that NaV1.2 channel gain-of-function typically causes epilepsy, whereas loss-of-function leads to ID/autism. How altered channel biophysics translate into patient neurons remains unknown. Here, we investigated iPSC-derived early-stage cortical neurons from ID patients harboring diverse pathogenic SCN2A variants [p.(Leu611Valfs*35); p.(Arg937Cys); p.(Trp1716*)], and compared them to neurons from an epileptic encephalopathy patient [p.(Glu1803Gly)] and controls. ID neurons consistently expressed lower NaV1.2 protein levels. In neurons with the frameshift variant, NaV1.2 mRNA and protein levels were reduced by ~ 50%, suggesting nonsense-mediated decay and haploinsufficiency. In other ID neurons, only protein levels were reduced implying NaV1.2 instability. Electrophysiological analysis revealed decreased sodium current density and impaired action potential (AP) firing in ID neurons, consistent with reduced NaV1.2 levels. By contrast, epilepsy neurons displayed no change in NaV1.2 levels or sodium current density, but impaired sodium channel inactivation. Single-cell transcriptomics identified dysregulation of distinct molecular pathways including inhibition of oxidative phosphorylation in neurons with SCN2A haploinsufficiency, and activation of calcium signaling and neurotransmission in epilepsy neurons. Together, our patient iPSC-derived neurons reveal characteristic sodium channel dysfunction consistent with biophysical changes previously observed in heterologous systems. Additionally, our model links the channel dysfunction in ID to reduced NaV1.2 levels and uncovers impaired AP firing in early-stage neurons. The altered molecular pathways may reflect a homeostatic response to NaV1.2 dysfunction and can guide further investigations

    Tideglusib Rescues Neurite Pathology of SPG11 iPSC Derived Cortical Neurons

    Get PDF
    Mutations in SPG11 cause a complicated autosomal recessive form of hereditary spastic paraplegia (HSP). Mechanistically, there are indications for the dysregulation of the GSK3β/βCat signaling pathway in SPG11. In this study, we tested the therapeutic potential of the GSK3β inhibitor, tideglusib, to rescue neurodegeneration associated characteristics in an induced pluripotent stem cells (iPSCs) derived neuronal model from SPG11 patients and matched healthy controls as well as a CRISPR-Cas9 mediated SPG11 knock-out line and respective control. SPG11-iPSC derived cortical neurons, as well as the genome edited neurons exhibited shorter and less complex neurites than controls. Administration of tideglusib to these lines led to the rescue of neuritic impairments. Moreover, the treatment restored increased cell death and ameliorated the membranous inclusions in iPSC derived SPG11 neurons. Our results provide a first evidence for the rescue of neurite pathology in SPG11-HSP by tideglusib. The current lack of disease-modifying treatments for SPG11 and related types of complicated HSP renders tideglusib a candidate compound for future clinical application
    corecore