

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Genetically-Modified Multiple Cell Lines

Generation of a homozygous and a heterozygous *SNCA* gene knockout human-induced pluripotent stem cell line by CRISPR/Cas9 mediated allele-specific tuning of *SNCA* expression

Yanni Schneider^a, Soeren Turan^b, Aron Koller^a, Mandy Krumbiegel^c, Michaela Farrell^b, Sonja Plötz^a, Jürgen Winkler^a, Wei Xiang^{a,*}

^a Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany ^b Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany

^c Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany

ABSTRACT

Aggregation of alpha-synuclein (aSyn) is closely linked to Parkinson's disease, probably due to the loss of physiological functions and/or gain of toxic functions of aggregated aSyn. Significant efforts have been made elucidating the physiological structure and function of aSyn, however, with limited success thus far in humanderived cells, partly because of restricted resources. Here, we developed two human-induced pluripotent stem cell lines using CRISPR/Cas9-mediated allele-specific frame-shift deletion of the aSyn encoding gene *SNCA*, resulting in homo- and heterozygous *SNCA* knockout. The generated cell lines are promising cellular tools for studying aSyn dosage-dependent functions and structural alterations in human neural cells.

(continued)

1. Resource Table

		Evidence of the reprogramming	Sendai Reprogramming Kit is based on a
Unique stem cell lines identifier	UKERi010-A-1	transgene loss (including genomic	non-integrating Sendai virus remaining
	UKERi010-A-2	copy if applicable)	in the cytoplasm
Alternative name(s) of stem cell lines	UKERi7MN-010-1, SNCA(-/-)	Cell culture system used	iPSC line was grown on basement
	UKERi7MN-010-2, SNCA(+/-)		membrane extracted from murine
Institution	Department of Molecular Neurology		tumors in mTeSR
	University Hospital Erlangen	Type of Genetic Modification	Induced mutation
	Friedrich-Alexander-University	Associated disease	N/A
	Erlangen-Nürnberg	Gene/locus	SNCA, chromosome 4q22.1
Contact information of the reported cell line distributor	Wei Xiang, Email: wei.xiang@fau.de	Method of modification/site-specific nuclease used	CRISPR/Cas9
Type of cell lines	iPSC	Site-specific nuclease (SSN) delivery	RNP
Origin	Human	method	
Additional origin info	Age: 52	All genetic material introduced into the	Recombinant Cas9, sgRNAs
(applicable for human ESC or iPSC)	Sex: female	cells	
	Ethnicity: Caucasian	Analysis of the nuclease-targeted allele	Sanger sequencing of targeted alleles
Cell Source	Original cell type induced for	status	
	reprogramming: dermal fibroblasts	Method of the off-target nuclease	Targeted PCR/sequencing
Method of reprogramming	Invitrogen [™] CytoTune [™] -iPS 2.0 Sendai	activity surveillance	
	Reprogramming Kit	Name of transgene	No transgene was inserted
Clonality	Clonal	Eukaryotic selective agent resistance	N/A
	(continued on next column)	(including inducible/gene expressing cell-specific)	

(continued on next page)

Abbreviations: aSyn, Alpha-synuclein; CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; SNCA, Gene encoding alpha-synuclein; PD, Parkinson's disease; hiPSCs, Human-induced pluripotent stem cells; sgRNA, single guide RNA.

* Corresponding author at: Department of Molecular Neurology, University Hospital Erlangen, Frie-drich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.

E-mail address: wei.xiang@fau.de (W. Xiang).

https://doi.org/10.1016/j.scr.2022.102952

Received 7 August 2022; Received in revised form 23 September 2022; Accepted 19 October 2022 Available online 20 October 2022

1873-5061/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fig. 1. Workflow and characterization of CRISPR/Cas9-mediated allele-specific gene editing of SNCA.

Y. Schneider et al.

(continued)

Inducible/constitutive system details	N/A
Date archived/stock date	07/2022
Cell line repository/bank	UKERi010-A-1:
	https://hpscreg.eu/user/celllin
	e/edit/UKERi010-A-1
	UKERi010-A-2:
	https://hpscreg.eu/user/celllin
	e/edit/UKERi010-A-2
Ethical/GMO work approvals	Institutional Review Board approval
	number: 259_17B (31/01/2022),
	Friedrich-Alexander-University
	Erlangen-Nürnberg
Addgene/public access repository	N/A
recombinant DNA sources' disclaimers	
(if applicable)	

2. Manuscript section expected contents clarification

2.1. Resource utility

The reported hiPSC lines were generated from a healthy donor without interference of other known pathogenic mutations. Thus, these hiPSC lines with reduced or fully inactive aSyn allow to study the involvement of aSyn in cellular processes of human-derived cells, in particular in different cellular CNS derivatives.

2.2. Resource details

Alpha-synuclein (aSyn) encoded by the SNCA gene is involved in synucleinopathies, including Parkinson's disease (PD). aSyn aggregation-mediated loss of physiological functions and/or gain of toxic functions are believed to induce synucleinopathies (Oliveira et al., 2021). Despite intense efforts, physiological structure and function of aSyn, in particular in human-derived cells, remains elusive. Recent studies on aSyn pathophysiology frequently used neural cells differentiated from human-derived iPSCs (hiPSCs) generated from monogenic PD patients carrying SNCA gene multiplications. Isogenic hiPSC lines with corrected SNCA dosage have already been generated, which are powerful for investigating specific effects of aSyn in inducing PD-related phenotypes (Zafar et al., 2022). For studying physiological role of aSyn, there is an urgent need of human cells with down-regulated aSyn expression, however, without the multiplication of other genes flanking SNCA. Here, we generated a homozygous and a heterozygous SNCA knockout cell line (SNCA-/-, SNCA+/-) from a hiPSC line originally derived from a healthy donor without any history of neurological disease and known pathogenic gene mutations.

SNCA consists of 6 exons, of which exons 2-6 encode full-length aSyn. For precise SNCA knockout, we targeted exon 2 which contains the start codon ATG taking advantage of the error-prone non-homologous end joining (NHEJ). The gene editing approach was performed using CRISPR/Cas9 technology (Fig. 1A). For an efficient and straightforward evaluation of SNCA knockout, two single guide RNAs (sgRNAs, Table 2) were designed flanking exon 2 (Fig. 1B). Since the Cas9 nuclease cuts a specific sequence 3 base pairs (bp) upstream of the PAM sequence of the sgRNAs, using the designed sgRNAs might result in a 118 bp deletion within exon 2 of SNCA. For gene editing, the parental hiPSC line was nucleofected with synthetic sgRNAs and recombinant Cas9 as ribonucleoprotein. Afterwards, single hiPSCs were sorted by flow cytometry into a 96-well plate for expansion. Clonal hiPSCs were next splitted in two 48-well plates for genotype screening (Fig. 1A, gDNA) by PCR evaluation of the deleted 118 bp, followed by further verification approaches (Fig. 1C) and for freezing (Fig. 1A, backup). The modified hiPSC clones were verified for the predicted deletion of 118 bp by amplicon sequencing (Fig. 1C, right) of the PCR products (Fig. 1C, left). In the SNCA-/- line there are no remaining wildtype alleles, while Stem Cell Research 65 (2022) 102952

Table 1			
Characterization	and	validatio	

Classification	Test	Result	Data
Morphology	Photography	Visual records of the hiPSC line's cellular morphology.	Phase- contrast images of the edited hiPSC lines compared to the parental hiPSC line. Fig. S1D
Pluripotency status evidence for the described cell line	Qualitative analysis	Immunocytochemical staining of pluripotency markers Sox2, Oct3/4, and Nanog	Fig. 1F
	Quantitative analysis	Flow cytometry of TRA 1–60 UKERi7MN-010-1 (<i>SNCA</i> -/-): 94.3 % positive cells UKERi7MN-010-2 (<i>SNCA</i> +/-): 95.9 % positive cells	Fig. 1G
Karyotype	Karyotype (G- banding)	46XX, Resolution 450 bhps	Fig. S2B
Genotyping for the desired genomic alteration/allelic status of the gene of interest	PCR across the edited site	PCR and agarose gel electrophoresis with subsequent sequencing of fragments for confirmation of homo-/ and heterozygous <i>SNCA</i> knockout status	Fig. 1C and D
	Transgene- specific PCR	N/A	N/A
Verification of the absence of random plasmid integration events	N/A	N/A	Synthetic guide RNAs – no plasmids were applied
Parental and modified cell line genetic identity evidence	STR analysis	STR analysis of the 9 core STR markers. All the loci of the modified cell lines matched the parental line	STR analysis file submitted in the archive with journal
Mutagenesis/ genetic modification outcome analysis	Sequencing of genomic DNA PCR-based analyses	Amplicon-EN NGS- based sequencing Detection of deletion on agarose gel	Fig. 1C
	Western blotting for SNCA knock out	electrophoresis NPCs differentiated from UKERi010-A-1 (<i>SNCA</i> -/-, absence of aSyn immunosignals) and from UKERi010-A-2 (<i>SNCA</i> +/-, reduced aSyn levels)	Fig. 1E
Off-target nuclease analysis-	PCR across top 6 predicted top likely off-target sites	Lack of NHEJ-caused mutagenesis in the top predicted off-target Cas nuclease activity	Fig. S1A
Specific pathogen- free status	Mycoplasma testing by luminescence	Modified lines are negative	Fig. S1B
Multilineage differentiation potential	Embryoid body formation and directed three germ layer differentiation	Parental and modified cell lines are capable of differentiating in three germ layers as well as forming embryoid bodies	Fig. S1C and S1D
Donor screening (OPTIONAL)	HIV 1 + 2 Hepatitis B, Hepatitis C	N/A	N/A
Genotype – additional	Blood group genotyping	N/A	N/A
histocompatibility info (OPTIONAL)	HLA tissue typing	N/A	N/A

Table 2

Reagents details.

Antibodies and stains used for immunocytochemistry/flow-cytometry				
	Antibody	Dilution	Company Cat # and RRID	
Primary antibody – Western blot	Mouse anti-aSyn (Syn1)	1:1,000	BD Biosciences Cat# 610787, RRID:AB_398108	
Primary antibody – Immunocytochemistry	Rat anti-aSyn (15G7) antibody	1:200	Enzo Life Sciences Cat# ALX-804–258, RRID: AB_2270759	
Pluripotency marker – Immunocytochemistry	Rabbit anti-Sox2 (D6D9)	1:400	Cell Signaling Technology Cat# 3579, RRID: AB_2195767	
Pluripotency marker – Immunocytochemistry	Goat anti-Nanog	1:200	R and D Systems Cat# AF1997, RRID:AB_355097	
Pluripotency marker – Immunocytochemistry	Mouse anti-Oct-3/4 (C-10)	1:200	Santa Cruz Biotechnology Cat# sc-5279, RRID: AB_628051	
Pluripotency marker – flow cytometry	Alexa Fluor(R) 488 anti-human TRA-1–60-R antibody	1:50	BioLegend Cat# 330614, RRID:AB_2119064	
Loading control – Western blot	Rabbit anti-GAPDH polyclonal antibody, unconjugated	1:1,000	Abcam Cat# ab9485, RRID:AB_307275	
Neuronal differentiation – Immunocytochemistry	Mouse anti-Nestin	1:400	Millipore Cat# MAB5326, RRID:AB_2251134	
Secondary antibodies	Donkey anti-mouse IgG (H + L) antibody, Alexa Fluor 488, conjugated	1:1,000	Molecular Probes Cat# A-21202, RRID: AB_141607	
	Donkey anti-mouse antibody, Alexa Fluor 647, conjugated	1:500	Jackson ImmunoResearch Labs Cat# 715–605- 151, RRID:AB_2340863	
	Donkey anti-mouse IgG, $(H + L)$ highly cross-adsorbed secondary antibody, Alexa Fluor 568, conjugated	1:1,000	Thermo Fisher Scientific Cat# A10037, RRID: AB_2534013	
	Donkey anti-rat IgG (H $+$ L) antibody, Alexa Fluor 488 conjugated	1:1,000	Molecular Probes Cat# A-21208, RRID: AB_141709	
	Donkey anti-Goat IgG (H $+$ L) antibody, Alexa Fluor 568, conjugated	1:1,000	Molecular Probes Cat# A-11057, RRID: AB_142581	
Nuclear staining – Immunocytochemistry	4′,6-Diamidino-2-phenylindole (DAPI)	1:10,000	Sigma-Aldrich Cat#D8417	

Site-specific nuclease Nuclease information Delivery method Selection/enrichment strategy

spCas9 Nucleofection Single-cell sorting

Primers and Oligonucleotides used in this study

	Target	Forward/Reverse primer (5'-3')
Genotyping (desired allele/transgene presence detection)	PCR specific for the targeted allele	CCTTCTGCCTTTCCACCCT/TTGTCAGGATCCACAGGCAT; Representative PCR gel in Fig. 1C: Product size: 449 bp See supplementary file 1 for PCR parameters and device used
Targeted mutation sequencing	Amplicon PCR Primer without adapter sequence	CCTTCTGCCTTTCCACCCT/TTGTCAGGATCCACAGGCAT
sgRNA oligonucleotide	sgRNA oligonucleotides (synthetic)	sgRNA (5'-end of exon 2): GTAAAGGAATTCATTAGCCA
		sgRNA (3'-end of exon 2):
		AAAGAGGGIGIICICIAIGI
Genomic target sequence	Including PAM and other sequences likely to affect UCN activity	APE file submitted in archive with journal
Top exonal off-target predicted site	Off-target #1	GAAACATGGACTTCTGGCCC/TTGGCTGAGTCTGAGAGTGG
sequencing	AC003088.1	TCTCCTGCCTCAACCTCTTG/ACTTTCGGAGGCTGAGTCTG
	Off-target #2CLMP	TTCCATGCTTAGAGAGTCAGC/
	Off-target #3	AAGATCTATTGTCTAGGCAAGGG
	IL1RAPL1	GGCCAAGGTCTGATTGCAAA/ACACAGGAAGGAAGCAGACA
	Off-target #4	AGGAGAAGTTGAAGGCAGGG/GGTTTCAAGCCCCACACCTA
	RP11-297D21.4	ACTTGAACAGATTGAGAAGAGCT/
	Off-target #5	TGCAAGGGACAGTAGATACCA
	TTC28	
	Off-target #6	
	ANAPC13	

the *SNCA*+/-line shows an equal distribution of sequencing reads of the wildtype allele and the modified allele with deletion. To further verify modification-induced frame-shift, hiPSC lines were analysed using sequencing and ICE analysis (Fig. 1D, Fig. S2C), confirming the unchanged sequence of the wildtype allele in the *SNCA*+/- line and the identical frame-shift deletion of the modified allele(s) of both *SNCA* -/- and *SNCA* +/- lines.

Six genomic regions representing the highest homology to the sgRNA target region were analysed for potential off-target effects by PCR amplification (Fig. S1A). Due to very low expression of aSyn in hiPSCs, neural progenitor cells (NPCs) were generated from the reported hiPSC lines (*SCNA*-/- and *SNCA*+/-) to determine aSyn levels. The lack of aSyn expression in *SNCA*-/- NPCs and a reduced aSyn expression in *SNCA*+/- NPCs were confirmed by Western blot analysis (Fig. 1E) and immunocytochemistry (Fig. S2A). Moreover these expression data

exclude the persistence of functional transcripts and alternative start codons for *SNCA* expression in the remaining coding sequence. Furthermore, morphology and pluripotency of the reported hiPSC lines were analysed by phase contrast microscopy (Fig. S1D, Table 1), and immunocytochemical or flow cytometric analyses of pluripotency markers (Sox2, Oct3/4, Nanog) (Fig. 1F) or TRA 1-60 (Fig. 1G, Table 1). Differentiation potential of the generated hiPSC lines was also verified by trilineage differentiation assay (Fig. S1C).

3. Materials and methods

3.1. Cell culture

hiPSCs were cultured on a 6-well plate pre-coated with GeltrexTM (Thermo Fisher Scientific) in mTeSR (STEMCELL Technologies) with 1

% Penicillin/Streptomycin at 37 °C and 5 % CO₂. Cells were passaged every 3–5 days using Gentle Cell Dissociation Reagent (STEMCELL Technologies) in a ratio of 1:3–1:8. Gene editing was performed at passage 20 and all subsequent analyses were performed 5–10 passages after gene editing. Mycoplasma testing was performed using MycoAlertTM Mycoplasma Detection Kit (Lonza).

3.2. Genome editing

The gene editing was based on a previous protocol (Turan et al., 2019) (Fig. 1A). sgRNAs flanking exon 2 of SNCA (Table 2) were designed using the CRISPOR tool (http://crispor.tefor.net/). Recombinant Cas9 protein (Synthego) was adjusted to 20 µM and synthetic sgRNAs (Synthego) were diluted in nuclease-free, Tris-EDTA buffer to 100 µM. For assembly of the sgRNAs and Cas9, 300 pmol of sgRNAs and 40 pmol Cas9 were mixed in 5 µl and incubated for 10 min at RT. Next, cells were dissociated by accutase and electroporated using the nucleofector 2B (Lonza, program B-16) and the Human Stem Cell NucleofectorTM Kit 2 (Lonza). Single cells were subsequently replated on a 6well plate. After 48 hrs, cells were sorted as single clones onto 96-well plates in mTeSR containing 10 % CloneR supplement (STEMCELL Technologies). After another 5-10 days, each clone was duplicated on two 48-well plates, respectively for genotyping and cryopreservation (Fig. 1A). Cryopreservation was performed using Bambanker (Nippon). Genomic DNA was extracted using Quickextract (Lucigen) according to manufacturer's protocol and next amplified using Q5®High-Fidelity DNA Polymerase (New England Biolabs) and the primers (Table 2) for the screening purpose. More specific information for PCR is available in supplementary file 1. Final verification of the deletion of exon 2 was carried out by NGS-based Amplicon-EZ (Genewiz).

3.3. Off-target analysis

Genomic loci with a high homology to the target of the designed sgRNAs were identified using CRISPOR (http://crispor.tefor.net/) (Table 2). Six loci with the highest predictability for off-target modification were selected (primers in Table 2), amplified by PCR (supplementary file 1), and sequenced (LGC Genomics, Germany).

3.4. Short tandem repeat (STR) analysis

Genomic DNA was extracted by using Quickextract (Lucigen) according to manufacturer's protocol and analysed for STR by the service provider CLS, Germany.

3.5. Trilineage differentiation

Trilineage analysis was performed using the STEMdiff[™] Trilineage Differentiation Kit (STEMCELL Technologies). Immunocytochemical evaluation of germ layer-specific marker expression was performed using Human Three Germ Layer 3-Color Immunohistochemistry Kit (R&D Systems).

3.6. Western blot (WB), immunocytochemistry, and flow cytometry

For protein analysis, generation of cell homogenates as well as WB and immunocytochemistry were performed according to Seebauer et al. 2022 and flow cytometry according to Turan et al 2019 (supplementary file 1 for more specific experimental information).

3.7. Generation of embryoid body (EB) and differentiation into neural progenitor cells (NPCs)

EBs and NPCs were generated from hiPSC using a small moleculebased protocol as described in Seebauer et al., 2022.

3.8. G-banding

Karyotyping was performed by GTG banding at 450 bands resolution using standard protocols for lymphocyte cultures.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was supported by Bavarian Research Consortium "Interaction of Human Brain Cells" (ForInter), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 270949263/ GRK2162), the Marohn Foundation (Pyroglutamic-acid-alpha-synuclein) and Medical Research Foundation, University Hospital Erlangen (Parkinsonforschung, Molekulare Neurologie, University Hospital Erlangen). Fig. 1A and B were created with BioRender.com.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2022.102952.

References

- Oliveira, L., Gasser, T., Edwards, R., Zweckstetter, M., Melki, R., Stefanis, L., Lashuel, H. A., Sulzer, D., Vekrellis, K., Halliday, G.M., 2021. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. npj. Parkinson's Disease 7, 1–23.
- Seebauer, L., Schneider, Y., Drobny, A., Plötz, S., Koudelka, T., Tholey, A., Prots, I., Winner, B., Zunke, F., Winkler, J., 2022. Interaction of alpha synuclein and microtubule organization is linked to impaired neuritic integrity in Parkinson's patient-derived neuronal cells. Int. J. Mol. Sci. 23, 1812.
- Turan, S., Boerstler, T., Kavyanifar, A., Loskarn, S., Reis, A., Winner, B., Lie, D.C., 2019. A novel human stem cell model for Coffin-Siris syndrome-like syndrome reveals the importance of SOX11 dosage for neuronal differentiation and survival. Hum. Mol. Genet. 28, 2589–2599.
- Zafar, F., Srinivasaraghavan, V.N., Chen, M.Y., Torres, C.A.M., Schüle, B., 2022. Isogenic human SNCA gene dosage induced pluripotent stem cells to model Parkinson's disease. Stem Cell Res. 60, 102733.