79 research outputs found
An Analysis of How Interactive Technology Supports the Appreciation of Traditional Chinese Puppetry: A Review of Case Studies
From the perspective of safeguarding Chinese Cultural Heritage, this paper discusses how to enhance the appreciation of traditional Chinese puppetry through the support of interactive technology. The author analyses extensive, yet current case studies, based on the findings described in the interactive systems for puppetry performances and interactive technology for puppetry appreciation. The author summarises four aspects of how to enhance the appreciation of, and engagement with, traditional Chinese puppetry: (1) maintaining originality is necessary for the design phase; (2) it is crucial to explore how to use interactive technology in order to design a way for adults to appreciate this form of art; (3) it is also necessary to determine ways to support adult audiences in grasping the cultural significance and folk customs of traditional Chinese puppetry; and (4) the study’s further main research goals are to investigate ways to use emotional expressions, digital storytelling and other methods in conjunction with interactive technology to help multi-cultural users comprehend traditional Chinese puppetry
Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD
Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m2 at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression
Automatic Relation Extraction with Model Order Selection and Discriminative Label Identification
Group B streptococci invade endothelial cells: type III capsular polysaccharide attenuates invasion
Group B streptococci (GBS) are the most common cause of neonatal sepsis and pneumonia. The pathogenesis of GBS disease is not completely defined. GBS-induced endothelial cell injury is suggested by histological findings at autopsy and in animal studies. We hypothesized that (i) type III GBS (COH-1) invade and injure human umbilical vein endothelial (HUVE) cells and (ii) isogenic mutations in GBS capsule synthesis would influence HUVE invasion. Confluent HUVE monolayers were infected for 0.5, 2, or 6 h. Media with penicillin plus gentamicin were added and incubated for 2 h to kill extracellular bacteria. Cells were washed and lysed, and the number of live intracellular bacteria was determined by plate counting. COH-1 invaded HUVE cells in a time-dependent manner at levels 1,000-fold higher than those of the noninvasive Escherichia coli strain but significantly lower than those of Staphylococcus aureus. There was no evidence for net intracellular replication of GBS within HUVE cells. COH-1 infection of HUVE cells caused the release of lactate dehydrogenase activity. GBS invasion was inhibited by cytochalasin D in a dose-dependent manner; GBS-induced lactate dehydrogenase release was attenuated by cytochalasin D. The isogenic strains COH 1-11, devoid of capsular sialic acid, and COH 1-13, devoid of all type III capsule, invaded HUVE cells three- to fivefold more than the parent COH-1 strain. The type III capsular polysaccharide and particularly the capsular sialic acid attenuate GBS invasion of HUVE cells. Electron micrographs of lung tissue from a GBS-infected newborn Macaca nemestrina also showed GBS within capillary endothelial cells. We conclude that endothelial cell invasion and injury are potential mechanisms in the pathogenesis of GBS disease.</jats:p
Group B streptococci (GBS) injure lung endothelium in vitro: GBS invasion and GBS-induced eicosanoid production is greater with microvascular than with pulmonary artery cells
Neonatal group B streptococcal (GBS) sepsis and pneumonia cause lung endothelial cell injury. GBS invasion of the lung endothelium may be a mechanism for injury and the release of vasoactive eicosanoids. Pulmonary artery endothelial cells (PAEC) and lung microvascular endothelial cells (LMvEC) were isolated from neonatal piglets and were characterized as endothelial on the basis of morphology, uptake of acyl low-density lipoprotein, factor VIII staining, and formation of tube-like structures on Matrigel. PAEC and LMvEC monolayers were infected with COH-1 (parent GBS strain), isogenic mutants of COH-1 devoid of capsular sialic acid or all capsular polysaccharide, or a noninvasive Escherichia coli strain, DH5 alpha. Intracellular GBS were assayed by plate counting of colony-forming units resistant to incubation with extracellular antibiotics. All GBS strains invaded LMvEC significantly more than PAEC, showing that the site of lung endothelial cell origin influences invasion. DH5 alpha was not invasive in either cell type. Both isogenic mutants invaded PAEC and LMvEC more than COH-1 did, showing that GBS capsular polysaccharide attenuates invasion. Live GBS caused both LMvEC and PAEC injury as assessed by lactate dehydrogenase release; heat-killed GBS and DH5 alpha caused no significant injury. Supernatants from PAEC and LMvEC were assayed by radioimmunoassay for prostaglandin E2 (PGE2), the stable metabolite of prostacyclin (6-keto-PGF1 alpha), and the thromboxane metabolite thromoxane B2. At 4 h, live COH-1 caused no significant increases in eicosanoids from both PAEC and LMvEC. At 16 h, live COH-1, but not heat-killed COH-1, caused a significant increase in 6-keto-PGF1 alpha greater than PGE2 from LMvEC, but not PAEC. We conclude that live GBS injure and invade the lung microvascular endothelium and induce release of prostacyclin and PGE2. We postulate that GBS invasion and injury of the lung microvasculature contribute to the pathogenesis of GBS disease.</jats:p
- …
