478 research outputs found

    Solvent Effects on Extractant Conformational Energetics in Liquid-Liquid Extraction: A Simulation Study of Molecular Solvents and Ionic Liquids

    Full text link
    Extractant design in liquid-liquid extraction (LLE) is a research frontier of metal ion separations that typically focuses on the direct extractant-metal interactions. However, a more detailed understanding of energetic drivers of separations beyond primary metal coordination is often lacking, including the role of solvent in the extractant phase. In this work, we propose a new mechanism for enhancing metal-complexant energetics with nanostructured solvents. Using molecular dynamics simulations with umbrella sampling, we find that the organic solvent can reshape the energetics of the extractant's intramolecular conformational landscape. We calculate free energy profiles of different conformations of a representative bidentate extractant, n-octyl(phenyl)-N,N-diisobutyl carbamoyl methyl phosphinoxide (CMPO), in four different solvents: dodecane, tributyl phosphate (TBP), and dry and wet ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf_2N]). By promoting reorganization of the extractant molecule into its binding conformation, our findings reveal how particular solvents can ameliorate this unfavorable step of the metal separation process. In particular, the charge alternating nanodomains formed in ILs substantially reduce the free energy penalty associated with extractant reorganization. Importantly, using alchemical free energy calculations, we find that this stabilization persists even when we explicitly include the extracted cation. These findings provide insight into the energic drivers of metal ion separations and potentially suggest a new approach to designing effective separations using a molecular-level understanding of solvent effects

    Synthesis, Structure, and Ferromagnetism of a New Oxygen Defect Pyrochlore System Lu2V2O_{7-x} (x = 0.40-0.65)

    Full text link
    A new fcc oxygen defect pyrochlore structure system Lu2V2O_{7-x} with x = 0.40 to 0.65 was synthesized from the known fcc ferromagnetic semiconductor pyrochlore compound Lu2V2O7 which can be written as Lu2V2O6O' with two inequivalent oxygen sites O and O'. Rietveld x-ray diffraction refinements showed significant Lu-V antisite disorder for x >= 0.5. The lattice parameter versus x (including x = 0) shows a distinct maximum at x ~ 0.4. We propose that these observations can be explained if the oxygen defects are on the O' sublattice of the structure. The magnetic susceptibility versus temperature exhibits Curie-Weiss behavior above 150 K for all x, with a Curie constant C that increases with x as expected in an ionic model. However, the magnetization measurements also show that the (ferromagnetic) Weiss temperature theta and the ferromagnetic ordering temperature T_C both strongly decrease with increasing x instead of increasing as expected from C(x). The T_C decreases from 73 K for x = 0 to 21 K for x = 0.65. Furthermore, the saturation moment at a field of 5.5 T at 5 K is nearly independent of x, with the value expected for a fixed spin 1/2 per V. The latter three observations suggest that Lu2V2O_{7-x} may contain localized spin 1/2 vanadium moments in a metallic background that is induced by oxygen defect doping, instead of being a semiconductor as suggested by the C(x) dependence.Comment: 9 pages including 7 figures, 3 table

    Simulated Changes in Storm Morphology Associated with a Sea-Breeze Air Mass

    Full text link
    The central east coast of Australia is frequently impacted by large hail and damaging winds associated with severe convective storms, with individual events recording damages exceeding AUD 1 billion. These storms present a significant challenge for forecasting because of their development in seemingly marginal environments. They often have been observed to intensify upon approaching the coast, with case studies and climatological analyses indicating that interactions with the sea breeze are key to this process. The relative importance of the additional lifting and vorticity along the sea-breeze front in comparison with the change to a cooler, moister air mass with stronger low-level shear behind the front has yet to be investigated. Here, the role of the sea-breeze air mass is isolated using idealized numerical simulations of storms developing in a horizontally homogeneous environment. The base-state substitution (BSS) modeling technique is utilized to introduce the sea-breeze air mass following initial storm development. Relative to a simulation without BSS, the storm is longer lived and more intense, ultimately developing supercell characteristics including increased updraft rotation, deviant motion to the left of the mean wind vector, and a strong reflectivity gradient on the inflow edge. Separately simulating the changes in the thermodynamic and wind fields reveals that the enhanced storm longevity and intensity are primarily due to the latter. The change in the low-level environmental winds slows gust-front propagation, allowing the storm to continue to ingest warm, potentially buoyant environmental air. At the same time, increased low-level shear promotes the development of persistent updraft rotation that causes the storm to make a transition from a multicell to a supercell

    Functional Electrical Stimulation following nerve injury in a Large Animal Model.

    Get PDF
    INTRODUCTION: Controversy exists over the effects of functional electrical stimulation (FES) on reinnervation. We hypothesized that intramuscular FES would not delay reinnervation after recurrent laryngeal nerve (RLn) axonotmesis. METHODS: RLn cryo-injury and electrode implantation in ipsilateral posterior cricoarytenoid muscle (PCA) were performed in horses. PCA was stimulated for 20 weeks in eight animals; seven served as controls. Reinnervation was monitored through muscle response to hypercapnia, electrical stimulation and exercise. Ultimately, muscle fiber type proportions and minimum fiber diameters, and RLn axon number and degree of myelination were determined. RESULTS: Laryngeal function returned to normal in both groups within 22 weeks. FES improved muscle strength and geometry, and induced increased type I:II fiber proportion (p=0.038) in the stimulated PCA. FES showed no deleterious effects on reinnervation. DISCUSSION: Intramuscular electrical stimulation did not delay PCA reinnervation after axonotmesis. FES can represent a supportive treatment to promote laryngeal functional recovery after RLn injury. This article is protected by copyright. All rights reserved

    Temperature-dependent spin gap and singlet ground state in BaCuSi2O6

    Full text link
    Bulk magnetic measurements and inelastic neutron scattering were used to investigate the spin-singlet ground state and magnetic gap excitations in BaCuSi2O6, a quasi-2-dimensional antiferromagnet with a bilayer structure. The results are well described by a model based on weakly interacting antiferromagnetic dimers. A strongly temperature-dependent dispersion in the gap modes was found. We suggest that the observed excitations are analogous to magneto-excitons in light rare-earth compounds, but are an intrinsic property of a simple Heisenberg Hamiltonian for the S=1/2 magnetic bilayer.Comment: 10 pages, 4 figures, REVTeX and PS for text, PS for figures direct download: http://papillon.phy.bnl.gov/preprints/bacusio.htm

    Molecular Genetic Approaches to Disease of Neural Development

    Get PDF
    This study utilized novel genetic techniques in order to find causative gene mutations that underlie diseases of neural development. Our laboratory has collected 175 cases of malformations of cortical development (MCD) from the United States and Europe. Four of these cases are the focus of this manuscript: two familial cases of infantile neuroaxonal dystrophy (INAD), a familial case of hereditary spastic paraparesis (HSP), and a sporadic case of Greig cephalopolysyndactyly (GCPS) and cerebral cavernous malformations (CCMs). The techniques utilized to study the affected patients include microarray-based single nucleotide polymorphism (SNP) genotyping and copy number variation (CNV) analysis, both of which are powerful tools in the hunt for disease-causing gene mutations. In the familial cases of INAD, we report two novel mutations in the PLA2G6 gene, previously shown to cause INAD when mutated. In the familial case of HSP, we demonstrate linkage to the SPG11 locus on chromosome 15q. Finally, in the sporadic case of GCPS and CCM, we published the first report on this novel syndrome along with a genetic analysis that demonstrates a microdeletion on chromosome 7p, resulting in heterozygous loss of both the GLI3 and CCM2 genes. The three studies presented in this manuscript demonstrate the utility of SNP genotyping and CNV analysis in revealing the genetic mutations that underlie diseases of neural development
    corecore