33 research outputs found

    Quantifying the domestic building fabric 'performance gap'

    Get PDF
    In the UK, there is mounting evidence that the measured in situ performance of the building fabric in new build dwellings can be greater than that predicted, resulting in a significant building fabric ‘performance gap’. This paper presents the coheating test results from 25 new build dwellings built to Part L1A 2006 or better. Whilst the total number of dwellings reported here is small, the results suggest that a substantial ‘performance gap’ can exist between the predicted and measured performance of the building fabric, with the measured whole building U-value being just over 1.6 times greater than that predicted. This is likely to have significant implications in terms of the energy use and CO2 emissions attributable to these dwellings in-use

    Post-construction thermal testing: Some recent measurements

    Get PDF
    In the UK, it has become apparent in recent years that there is often a discrepancy between the steady-state predicted and the measured in situ thermal performance of the building fabric, with the measured in situ performance being greater than that predicted. This discrepancy or gap in the thermal performance of the building fabric is commonly referred to as the building fabric 'performance gap'. This paper presents the results and key messages obtained from undertaking a whole-building heat loss test (a coheating test) on seven new-build dwellings as part of the Technology Strategy Board's Building Performance Evaluation Programme. While the total number of dwellings involved in the work reported here is small, the results illustrate that a wide range of discrepancies in thermal performance was measured for the tested dwellings. Despite this, the results also indicate that it is possible to construct dwellings where the building fabric performs thermally more or less as predicted, thus effectively bridging the traditional building fabric performance gap that exists in mainstream housing in the UK

    Review of lattice results concerning low-energy particle physics

    Get PDF

    Commitment accounting of CO2 emissions

    No full text
    The world not only continues to build new coal-fired power plants, but built more new coal plants in the past decade than in any previous decade. Worldwide, an average of 89 gigawatts per year (GW yr-1) of new coal generating capacity was added between 2010 and 2012, 23 GW yr-1 more than in the 2000-2009 time period and 56 GW yr-1 more than in the 1990-1999 time period. Natural gas plants show a similar pattern. Assuming these plants operate for 40 years, the fossil-fuel burning plants built in 2012 will emit approximately 19 billion tons of CO2 (Gt CO2) over their lifetimes, versus 14 Gt CO2 actually emitted by all operating fossil fuel power plants in 2012. We find that total committed emissions related to the power sector are growing at a rate of about 4% per year, and reached 307 (with an estimated uncertainty of 192-439) Gt CO2 in 2012. These facts are not well known in the energy policy community, where annual emissions receive far more attention than future emissions related to new capital investments. This paper demonstrates the potential for 'commitment accounting' to inform public policy by quantifying future emissions implied by current investments

    IPCC gazes into the future

    No full text
    corecore