19 research outputs found

    Size dependence on the ordering process in colloidal FePt nanoparticles

    Get PDF
    An alternative method to study the effects of annealing process on colloidal FePt nanoparticles (2-4 nm) has been achieved. Annealing experiments at temperatures between 773 and 1073 K under inert atmosphere flux were performed in powder samples with excess of surfactant molecules on nanoparticle surface. Transmission electron microscopy, x-ray diffraction and magnetic measurements were performed to evidence the evolution of the chemically disordered fcc to chemically ordered face-centered tetragonal phase transformation. Magnetization measurements under zero-field-cooling and field-cooling (M-ZFC-M-FC) conditions, and hysteresis loops are extremely sensitive to the particle size distribution and were strongly affected by the annealing treatment. (c) 2007 American Institute of Physics.101

    Nanostructure and giant Hall effect in TMx(SiO2)(1-x) (TM=Co,Fe,Ni) granular system

    Get PDF
    Granular TMx(SiO2)(1-x) (TM=Co,Fe,Ni) thin films were thermally treated at different temperatures and their magnetotransport and structural properties were studied. Hall resistivity decreases with thermal annealing. Structure was analyzed based on small angle x-ray scattering results. A model of polydisperse system of hard spheres was used for obtaining structural parameters. Analysis reveals that a volume fraction of transition-metal atoms (less than 29%) are forming nanospheres. Changes in giant Hall effect upon annealing can depend on a particular combination of nanoparticle diameter, interparticle distance, and size distribution. (C) 2006 American Institute of Physics.99

    Blocking phenomena in granular magnetic alloys through magnetization, Hall effect, and magnetoresistance experiments

    Get PDF
    Magnetization and magnetotransport were measured in CoxAg1-x granular composites as a function of temperature and applied magnetic field. A transition from blocked to superparamagnetic behavior with increasing temperatures can be observed in magnetization, giant magnetoresistance and the extraordinary Hall effect measurements. However, the blocking temperature determined from magnetotransport measurements is systematically lower than the one estimated from magnetic measurements. This is due to the selective magnetic scattering, which is enhanced for smaller particles, while the magnetization probes the whole particle size distribution. (C) 2003 American Institute of Physics.82576376

    Molecular Pathogenesis and Therapy of Polycythemia Induced in Mice by JAK2 V617F

    Get PDF
    BACKGROUND: A somatic activating mutation (V617F) in the JAK2 tyrosine kinase was recently discovered in the majority of patients with polycythemia vera (PV), and some with essential thrombocythemia (ET) and chronic idiopathic myelofibrosis. However, the role of mutant JAK2 in disease pathogenesis is unclear. METHODS AND FINDINGS: We expressed murine JAK2 WT or V617F via retroviral bone marrow transduction/transplantation in the hematopoietic system of two different inbred mouse strains, Balb/c and C57Bl/6 (B6). In both strains, JAK2 V617F, but not JAK2 WT, induced non-fatal polycythemia characterized by increased hematocrit and hemoglobin, reticulocytosis, splenomegaly, low plasma erythropoietin (Epo), and Epo-independent erythroid colonies. JAK2 V617F also induced leukocytosis and neutrophilia that was much more prominent in Balb/c mice than in B6. Platelet counts were not affected in either strain despite expression of JAK2 V617F in megakaryocytes and markedly prolonged tail bleeding times. The polycythemia tended to resolve after several months, coincident with increased spleen and marrow fibrosis, but was resurrected by transplantation to secondary recipients. Using donor mice with mutations in Lyn, Hck, and Fgr, we demonstrated that the polycythemia was independent of Src kinases. Polycythemia and reticulocytosis responded to treatment with imatinib or a JAK2 inhibitor, but were unresponsive to the Src inhibitor dasatinib. CONCLUSIONS: These findings demonstrate that JAK2 V617F induces Epo-independent expansion of the erythroid lineage in vivo. The fact that the central erythroid features of PV are recapitulated by expression of JAK2 V617F argues that it is the primary and direct cause of human PV. The lack of thrombocytosis suggests that additional events may be required for JAK2 V617F to cause ET, but qualitative platelet abnormalities induced by JAK2 V617F may contribute to the hemostatic complications of PV. Despite the role of Src kinases in Epo signaling, our studies predict that Src inhibitors will be ineffective for therapy of PV. However, we provide proof-of-principle that a JAK2 inhibitor should have therapeutic effects on the polycythemia, and perhaps myelofibrosis and hemostatic abnormalities, suffered by MPD patients carrying the JAK2 V617F mutation

    Aconitase Regulation of Erythropoiesis Correlates with a Novel Licensing Function in Erythropoietin-Induced ERK Signaling

    Get PDF
    Erythroid development requires the action of erythropoietin (EPO) on committed progenitors to match red cell output to demand. In this process, iron acts as a critical cofactor, with iron deficiency blunting EPO-responsiveness of erythroid progenitors. Aconitase enzymes have recently been identified as possible signal integration elements that couple erythropoiesis with iron availability. In the current study, a regulatory role for aconitase during erythropoiesis was ascertained using a direct inhibitory strategy.In C57BL/6 mice, infusion of an aconitase active-site inhibitor caused a hypoplastic anemia and suppressed responsiveness to hemolytic challenge. In a murine model of polycythemia vera, aconitase inhibition rapidly normalized red cell counts, but did not perturb other lineages. In primary erythroid progenitor cultures, aconitase inhibition impaired proliferation and maturation but had no effect on viability or ATP levels. This inhibition correlated with a blockade in EPO signal transmission specifically via ERK, with preservation of JAK2-STAT5 and Akt activation. Correspondingly, a physical interaction between ERK and mitochondrial aconitase was identified and found to be sensitive to aconitase inhibition.Direct aconitase inhibition interferes with erythropoiesis in vivo and in vitro, confirming a lineage-selective regulatory role involving its enzymatic activity. This inhibition spares metabolic function but impedes EPO-induced ERK signaling and disturbs a newly identified ERK-aconitase physical interaction. We propose a model in which aconitase functions as a licensing factor in ERK-dependent proliferation and differentiation, thereby providing a regulatory input for iron in EPO-dependent erythropoiesis. Directly targeting aconitase may provide an alternative to phlebotomy in the treatment of polycythemia vera

    Evidence of existence of metastable SrFe12O19 nanoparticles

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The existence of metastable hexaferrite is reported. Synthesis of strontium hexaferrite, SrFe12O15, at 400 degrees C was realized under controlled oxygen atmosphere. Such technique allows obtaining of SrFe12O15 at lower temperatures than those by traditional methods (above 800 degrees C). Phase transformation occurred during a measurement of magnetization vs. temperature (heating up to 625 degrees C). The heat treatment induces a change from SrFe12O15 to gamma-Fe2O3 (as the main phase), and SrFeO27.4 to Sr2Fe2O5. Together with these phase transformations, an increment in the amount of SrCO3 is detected. Magnetic study of the samples, before and after the heating, supports the structural analysis conclusions. (C) 2011 Elsevier B.V. All rights reserved.3232330223026CONICET (Argentina)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES [BR0920

    Structural and magnetic properties of TM-SiO2 (TM = Fe, Co, Ni) films

    No full text
    TMx-(SiO2)(1-x) (TM =Fe, Co, Ni) thin films were prepared in a wide concentration range (0.35 less than or equal to x less than or equal to 1). Structure was Studied with transmission electron microscopy (TEM), X-ray diffraction (XRD) and small angle X-ray scattering (SAXS). Magnetic and magnetotransport properties were investigated by means of magnetization and Hall effect measurements. TEM images display nanometric spherical structures embedded in a SiO2 amorphous matrix, with typical sizes increasing from 3 to 5 nm when TM volume concentration x is increased. SAXS measurements indicate a complex structure formed by nanosized objects. XRD measurements show that the structure is composed by amorphous SiO2 and TM crystallites. Slightly above the percolation threshold all samples display giant Hall effect. The observed magnetic properties are dependent on x, and display an evolution resulting from the progressive increase of the mean particle size. (C) 2003 Elsevier Science B.V. All rights reserved

    Nanostructure of granular Co-SiO2 thin films modified by thermal treatment and its relationship with the giant Hall effect

    No full text
    Granular cosputtered Co-52(SiO2)(48) thin films were thermally treated at different temperatures and their magnetotransport and structural properties were investigated. Hall resistivity increases with annealing temperature (T-a), up to T-a=250 degrees C, and then decreases to a minimum for T-a=400 degrees C. The structural analysis was based on small-angle x-ray scattering results. A model of a polydisperse system of hard spheres was used to retrieve structural parameters. Results reveal that a volume fraction of Co atoms (approximately 25%) are forming nanospheres. The giant Hall effect depends on a particular combination of nanoparticle diameter, size distribution, and interparticle distance.721

    Chemical synthesis and structural characterization of highly disordered ni colloidal nanoplarticles

    No full text
    This work focuses on synthetic methods to produce monodisperse Ni colloidal nanoparticles (NPs), in the 4-16 nm size range, and their structural characterization. Narrow size distribution nanoparticles were obtained by high-temperature reduction of a nickel salt and the production of tunable sizes of the Ni NPs was improved compared to other methods previously described. The as-synthesized nanciparticles exhibited spherical shape and highly disordered structure, as it could be assigned by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Annealing at high temperature in organic solvent resulted in an increase of nanoparticle atomic ordering; in this case, the XRD pattern showed an fcc-like structure. Complementary data obtained by X-ray absorption spectroscopy confirmed the complex structure of these nanoparticles. Temperature dependence of the magnetic susceptibility of these highly disordered Ni NPs showed the magnetic behavior cannot be described by the conventional superparamagnetic theory, claiming the importance of the internal structure in the magnetic behavior of such nanomaterials.261313131

    Annealing effects on 5 nm iron oxide nanoparticles

    No full text
    Morphological, structural and magnetic properties of 4.8 nm iron oxide nanoparticles have been investigated after annealing under inert atmosphere at different temperatures. The as-prepared iron oxide nanoparticles have been synthesized by chemical route from high temperature reaction of Fe(acac)(3) solution in presence of oleic acid and oleylamine surfactant. Annealing the particles at low temperatures (T-ann = 573 K) produces an increment of the mean size from 4.8 nm to 6.0 nm, preserving the same morphology. The coercive field of the annealed sample has a small increasing with respect to the as-prepared sample in agreement with the mean particle volume change. Annealing at higher temperature (T-ann = 823 K) leads to a bimodal size distribution of the iron oxide nanoparticles with 6.0 nm and 17 nm mean sizes respectively, where the bigger particles dominate the observed magnetic properties.793313331
    corecore