916 research outputs found

    Atmosphere above a large solar pore

    Get PDF
    A large solar pore with a granular light bridge was observed on October 15, 2008 with the IBIS spectrometer at the Dunn Solar Telescope and a 69-min long time series of spectral scans in the lines Ca II 854.2 nm and Fe I 617.3 nm was obtained. The intensity and Doppler signals in the Ca II line were separated. This line samples the middle chromosphere in the core and the middle photosphere in the wings. Although no indication of a penumbra is seen in the photosphere, an extended filamentary structure, both in intensity and Doppler signals, is observed in the Ca II line core. An analysis of morphological and dynamical properties of the structure shows a close similarity to a superpenumbra of a sunspot with developed penumbra. A special attention is paid to the light bridge, which is the brightest feature in the pore seen in the Ca II line centre and shows an enhanced power of chromospheric oscillations at 3-5 mHz. Although the acoustic power flux in the light bridge is five times higher than in the "quiet" chromosphere, it cannot explain the observed brightness.Comment: 6 pages, 3 figures, accepted in Journal of Physics: Conference Serie

    Chromospheric heating by acoustic waves compared to radiative cooling

    Full text link
    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm and Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4" and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric magnetic field strength between 300 G and 1300 G and inclination of 20-60 degrees, the contribution increases from 23 % (chromospheric network) to 54 % (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.Comment: 9 pages, 10 figures. Accepted for publication in The Astrophysical Journa

    Dynamics of the solar atmosphere above a pore with a light bridge

    Full text link
    Context: Solar pores are small sunspots lacking a penumbra that have a prevailing vertical magnetic field component. They can include light bridges at places with locally reduced magnetic field. Like sunspots, they exhibit a wide range of oscillatory phenomena. Aims: A large isolated pore with a light bridge (NOAA 11005) is studied to obtain characteristics of a chromospheric filamentary structure around the pore, to analyse oscillations and waves in and around the pore, and to understand the structure and brightness of the light bridge. Methods: Spectral imaging observations in the line Ca II 854.2 nm and complementary spectropolarimetry in Fe I lines, obtained with the DST/IBIS spectrometer and HINODE/SOT spectropolarimeter, were used to measure photospheric and chromospheric velocity fields, oscillations, waves, the magnetic field in the photosphere, and acoustic energy flux and radiative losses in the chromosphere. Results: The chromospheric filamentary structure around the pore has all important characteristics of a superpenumbra: it shows an inverse Evershed effect and running waves, and has a similar morphology and oscillation character. The granular structure of the light bridge in the upper photosphere can be explained by radiative heating. Acoustic waves leaking up from the photosphere along the inclined magnetic field in the light bridge transfer enough energy flux to balance the total radiative losses of the light-bridge chromosphere. Conclusions: The presence of a penumbra is not a necessary condition for the formation of a superpenumbra. The light bridge is heated by radiation in the photosphere and by acoustic waves in the chromosphere.Comment: 14 pages, 14 figures, 3 tables, accepted for publication in Astrononomy & Astrophysic

    The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system

    Full text link
    Using high-quality spectra of the twin stars in the XO-2 binary system, we have detected significant differences in the chemical composition of their photospheres. The differences correlate strongly with the elements' dust condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex and refractories are overabundant by up to 0.090 dex. On average, our error bar in relative abundance is 0.012 dex. We present an early metal-depletion scenario in which the formation of the gas giant planets known to exist around these stars is responsible for a 0.015 dex offset in the abundances of all elements while 20 M_Earth of non-detected rocky objects that formed around XO-2S explain the additional refractory-element difference. An alternative explanation involves the late accretion of at least 20 M_Earth of planet-like material by XO-2N, allegedly as a result of the migration of the hot Jupiter detected around that star. Dust cleansing by a nearby hot star as well as age or Galactic birthplace effects can be ruled out as valid explanations for this phenomenon.Comment: ApJ, in press. Complete linelist (Table 3) available in the "Other formats -> Source" downloa

    The size distribution of magnetic bright points derived from Hinode/SOT observations

    Full text link
    Context. Magnetic Bright Points (MBPs) are small-scale magnetic features in the solar photosphere. They may be a possible source of coronal heating by rapid footpoint motions that cause magnetohydrodynamical waves. The number and size distribution are of vital importance in estimating the small scale-magnetic-field energy. Aims. The size distribution of MBPs is derived for G-band images acquired by the Hinode/SOT instrument. Methods. For identification purposes, a new automated segmentation and identification algorithm was developed. Results. For a sampling of 0.108 arcsec/pixel, we derived a mean diameter of (218 +- 48) km for the MBPs. For the full resolved data set with a sampling of 0.054 arcsec/pixel, the size distribution shifted to a mean diameter of (166 +- 31) km. The determined diameters are consistent with earlier published values. The shift is most probably due to the different spatial sampling. Conclusions. We conclude that the smallest magnetic elements in the solar photosphere cannot yet be resolved by G-band observations. The influence of discretisation effects (sampling) has also not yet been investigated sufficiently.Comment: Astronomy and Astrophysics, Volume 498, Issue 1, 2009, pp.289-29

    Nonlocal extension of the dispersive-optical-model to describe data below the Fermi energy

    Full text link
    Present applications of the dispersive-optical-model analysis are restricted by the use of a local but energy-dependent version of the generalized Hartree-Fock potential. This restriction is lifted by the introduction of a corresponding nonlocal potential without explicit energy dependence. Such a strategy allows for a complete determination of the nucleon propagator below the Fermi energy with access to the expectation value of one-body operators (like the charge density), the one-body density matrix with associated natural orbits, and complete spectral functions for removal strength. The present formulation of the dispersive optical model (DOM) therefore allows the use of elastic electron-scattering data in determining its parameters. Application to 40{}^{40}Ca demonstrates that a fit to the charge radius leads to too much charge near the origin using the conventional assumptions of the functional form of the DOM. A corresponding incomplete description of high-momentum components is identified, suggesting that the DOM formulation must be extended in the future to accommodate such correlations properly. Unlike the local version, the present nonlocal DOM limits the location of the deeply-bound hole states to energies that are consistent with (\textit{e,e}′^{\prime}\textit{p}) and (\textit{p,2p}) data.Comment: 14 pages, 10 figures, submitted to Physical Review

    Structure and function of gene regulatory networks associated with worker sterility in honeybees.

    Get PDF
    A characteristic of eusocial bees is a reproductive division of labor in which one or a few queens monopolize reproduction, while her worker daughters take on reproductively altruistic roles within the colony. The evolution of worker reproductive altruism involves indirect selection for the coordinated expression of genes that regulate personal reproduction, but evidence for this type of selection remains elusive. In this study, we tested whether genes coexpressed under queen-induced worker sterility show evidence of adaptive organization within a model brain transcriptional regulatory network (TRN). If so, this structured pattern would imply that indirect selection on nonreproductive workers has influenced the functional organization of genes within the network, specifically to regulate the expression of sterility. We found that literature-curated sets of candidate genes for sterility, ranging in size from 18 to 267, show strong evidence of clustering within the three-dimensional space of the TRN. This finding suggests that our candidate sets of genes for sterility form functional modules within the living bee brain\u27s TRN. Moreover, these same gene sets colocate to a single, albeit large, region of the TRN\u27s topology. This spatially organized and convergent pattern contrasts with a null expectation for functionally unrelated genes to be haphazardly distributed throughout the network. Our meta-genomic analysis therefore provides first evidence for a truly social transcriptome that may regulate the conditional expression of honeybee worker sterility

    An Estimate of Chromospheric Heating by Acoustic Waves

    Get PDF
    Several mechanisms may heat the solar chromosphere: acoustic waves, magnetoacoustic waves (slow, fast, and Alfv\u27en waves), and small-scale magnetic reconnections. Based on observations in the Ca II 854.2 nm line, the contribution of acoustic waves to the heating of quiet and plage regions in the chromosphere is discussed. The energy released by radiative losses is compared with the energy deposited by acoustic waves. Radiative losses are computed using a grid of six semi-empirical models VAL A-F. The deposited acoustic flux is calculated using power spectra of Doppler oscillations measured in the Ca~II line core. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 70%. The deposited acoustic flux provides at least 25-30% of the energy radiated in the quiet chromosphere and 50% in plage regions

    Neutron and Proton Transverse Emission Ratio Measurements and the Density Dependence of the Asymmetry Term of the Nuclear Equation of State

    Get PDF
    Recent measurements of pre-equilibrium neutron and proton transverse emission from (112,124)Sn+(112,124)Sn reactions at 50 MeV/A have been completed at the National Superconducting Cyclotron Laboratory. Free nucleon transverse emission ratios are compared to those of A=3 mirror nuclei. Comparisons are made to BUU transport calculations and conclusions concerning the density dependence of the asymmetry term of the nuclear equation-of-state at sub-nuclear densities are made. The double-ratio of neutron-proton ratios between two reactions is employed as a means of reducing first-order Coulomb effects and detector efficiency effects. Comparison to BUU model predictions indicate a density dependence of the asymmetry energy that is closer to a form in which the asymmety energy increases as the square root of the density for the density region studied. A coalescent-invariant analysis is introduced as a means of reducing suggested difficulties with cluster emission in total nucleon emission. Future experimentation is presented
    • …
    corecore