1,441 research outputs found

    How do methanol masers manage to appear in the youngest star vicinities and isolated molecular clumps?

    Full text link
    General characteristics of methanol (CH3OH) maser emission are summarized. It is shown that methanol maser sources are concentrated in the spiral arms. Most of the methanol maser sources from the Perseus arm are associated with embedded stellar clusters and a considerable portion is situated close to compact HII regions. Almost 1/3 of the Perseus Arm sources lie at the edges of optically identified HII regions which means that massive star formation in the Perseus Arm is to a great extent triggered by local phenomena. A multiline analysis of the methanol masers allows us to determine the physical parameters in the regions of maser formation. Maser modelling shows that class II methanol masers can be pumped by the radiation of the warm dust as well as by free-free emission of a hypercompact region hcHII with a turnover frequency exceeding 100 GHz. Methanol masers of both classes can reside in the vicinity of hcHIIs. Modelling shows that periodic changes of maser fluxes can be reproduced by variations of the dust temperature by a few percent which may be caused by variations in the brightness of the central young stellar object reflecting the character of the accretion process. Sensitive observations have shown that the masers with low flux densities can still have considerable amplification factors. The analysis of class I maser surveys allows us to identify four distinct regimes that differ by the series of their brightest lines.Comment: 8 pages, 4 figures, invited presentation at IAU242 "Astrophysical Masers and their environments

    The Australia Telescope campaign to study southern class I methanol masers

    Full text link
    The Australia Telescope Compact Array (ATCA) and the Mopra facility have been used to search for new southern class I methanol masers at 9.9, 25 (J=5) and 104 GHz, which are thought to trace more energetic conditions in the interface regions of molecular outflows, than the widespread class I masers at 44 and 95 GHz. One source shows a clear outflow association.Comment: 2 pages, 1 figure (composed from 3 files), to appear in proceedings of IAU Symposium 242 "Astrophysical masers and their environment" (eds. J. Chapman and W. Baan

    Bethe-Sommerfeld conjecture for periodic operators with strong perturbations

    Full text link
    We consider a periodic self-adjoint pseudo-differential operator H=(Δ)m+BH=(-\Delta)^m+B, m>0m>0, in Rd\R^d which satisfies the following conditions: (i) the symbol of BB is smooth in \bx, and (ii) the perturbation BB has order less than 2m2m. Under these assumptions, we prove that the spectrum of HH contains a half-line. This, in particular implies the Bethe-Sommerfeld Conjecture for the Schr\"odinger operator with a periodic magnetic potential in all dimensions.Comment: 61 page

    Incommensurate antiferromagnetic fluctuations in single-crystalline LiFeAs studied by inelastic neutron scattering

    Full text link
    We present an inelastic neutron scattering study on single-crystalline LiFeAs devoted to the characterization of the incommensurate antiferromagnetic fluctuations at Q=(0.5±δ,0.5δ,ql)\mathbf{Q}=(0.5\pm\delta, 0.5\mp\delta, q_l). Time-of-flight measurements show the presence of these magnetic fluctuations up to an energy transfer of 60 meV, while polarized neutrons in combination with longitudinal polarization analysis on a triple-axis spectrometer prove the pure magnetic origin of this signal. The normalization of the magnetic scattering to an absolute scale yields that magnetic fluctuations in LiFeAs are by a factor eight weaker than the resonance signal in nearly optimally Co-doped BaFe2_2As2_2, although a factor two is recovered due to the split peaks owing to the incommensurability. The longitudinal polarization analysis indicates weak spin space anisotropy with slightly stronger out-of-plane component between 6 and 12 meV. Furthermore, our data suggest a fine structure of the magnetic signal most likely arising from superposing nesting vectors.Comment: 9 pages, 8 figure

    Two-photon transitions in primordial hydrogen recombination

    Full text link
    The subject of cosmological hydrogen recombination has received much attention recently because of its importance to predictions for and cosmological constraints from CMB observations. While the central role of the two-photon decay 2s->1s has been recognized for many decades, high-precision calculations require us to consider two-photon decays from the higher states ns,nd->1s (n>=3). Simple attempts to include these processes in recombination calculations have suffered from physical problems associated with sequences of one-photon decays, e.g. 3d->2p->1s, that technically also produce two photons. These correspond to resonances in the two-photon spectrum that are optically thick, necessitating a radiative transfer calculation. We derive the appropriate equations, develop a numerical code to solve them, and verify the results by finding agreement with analytic approximations to the radiative transfer equation. The related processes of Raman scattering and two-photon recombination are included using similar machinery. Our results show that early in recombination the two-photon decays act to speed up recombination, reducing the free electron abundance by 1.3% relative to the standard calculation at z=1300. However we find that some photons between Ly-alpha and Ly-beta are produced, mainly by 3d->1s two-photon decay and 2s->1s Raman scattering. At later times these photons redshift down to Ly-alpha, excite hydrogen atoms, and act to slow recombination. Thus the free electron abundance is increased by 1.3% relative to the standard calculation at z=900. The implied correction to the CMB power spectrum is neligible for the recently released WMAP and ACBAR data, but at Fisher matrix level will be 7 sigma for Planck. [ABRIDGED]Comment: Matches PRD accepted version. 28 pages, 12 figure

    Aspherical Explosion Models for SN 1998bw/GRB 980425

    Get PDF
    The recent discovery of the unusual supernova SN1998bw and its apparent correlation with the gamma-ray burst GRB 980425 has raised new issues concerning both the GRB and supernovae. Although the spectra resemble those of TypeIc supernovae, there are distinct differences at early times and SN1998bw appeared to be unusually bright and red at maximum light. The apparent expansion velocities inferred by the Doppler shift of (unidentified) absorption features appeared to be high, making SN1998bw a possible candidate for a "hypernova" with explosion energies between 20 and 50E51 erg and ejecta masses in excess of 6 - 15 M_o. Based on light curve calculations for aspherical explosions and guided by the polarization observations of "normal" SNIc and related events, we present an alternative picture that allows SN1998bw to have an explosion energy and ejecta mass consistent with core collapse supernovae (although at the 'bright' end). We show that the LC of SN1998bw can be understood as result of an aspherical explosion along the rotational axis of a basically spherical, non-degenerate C/O core of massive star with an explosion energy of 2foe and a total ejecta mass of 2 M_o if it is seen from high inclinations with respect to the plane of symmetry. In this model, the high expansion velocities are a direct consequence of an aspherical explosion which, in turn, produces oblate iso-density contours. It suggests that the fundamental core-collapse explosion process itself is strongly asymmetric.Comment: 12 pages, 8 figures, latex, aas2pp4.sty, submitted to Ap

    Methanol in W3(H2O) and Surrounding Regions

    Full text link
    We present the results of an interferometric study of 38 millimeter-wave lines of CH3OH in the region around the water maser source W3(H2O) and a region extending about 30" to the south and west of the hydroxyl maser source W3(OH). The methanol emitting region around W3(H2O) has an extent of 2.0" x 1.2" (4400 x 2600 AU). The density is of order 1.e7 cm-3, sufficient to thermalize most of the methanol lines. The kinetic temperature is approximately 140 K and the methanol fractional abundance greater than 1.e-6, indicative of a high degree of grain mantle evaporation. The W3(H2O) source contains sub-structure, with peaks corresponding to the TW source and Wyrowski's B/C, separated by 2500 AU in projection. The kinematics are consistent with these being distinct protostellar cores in a wide binary orbit and a dynamical mass for the region of a few tens of Mo. The extended methanol emission to the southwest of W3(OH) is seen strongly only from the lowest excitation lines and from lines known elsewhere to be class I methanol masers, namely the 84.5 GHz 5(-1)-4(0)E and 95.2 GHz 8(0)-7(1)A+ lines. Within this region there are two compact clumps, which we denote as swA and swB, each about 15" (0.16 pc projected distance) away from W3(OH). Excitation analysis of these clumps indicates the presence of lines with inverted populations but only weak amplification. The sources swA and swB appear to have kinetic temperatures of order 50-100 K and densities of order 1.e5 - 1.e6 cm-3. The methanol fractional abundance for the warmer clump is of order 1.e-7, suggestive of partial grain mantle evaporation. The clumping occurs on mass scales of order 1 Mo.Comment: 28 pages including 6 figures and 4 tables, accepted by Ap

    The 6.7-GHz and 25-GHz methanol masers in OMC-1

    Full text link
    The Australia Telescope Compact Array (ATCA) has been used to search for methanol maser emission at 6.7 GHz towards OMC-1. Two features peaking at 7.2 km/s and -1.1 km/s have been detected. The former has at least two components close in both velocity and position. It is located south-east of the Orion Kleinmann-Low (Orion-KL) nebula in the region of outflow traced by the 25-GHz methanol masers and the 95-GHz methanol emission. It is shown by modelling that in contrast to the widespread opinion that simultaneous masing of methanol transitions of different classes is impossible there are conditions for which simultaneous masing of the class II transition at 6.7-GHz and some class I transitions (e.g. the series at 25 GHz) is possible. A relevant example is provided, in which the pumping occurs via the first torsionally excited state and is driven by radiation of the dust intermixed with the gas in the cloud. In this regime the dust temperature is significantly lower (T is about 60 K) than in the case of bright 6.7-GHz masers (T>150 K). The narrow spectral feature at -1.1 km/s has a brightness temperature greater than about 1400 K, which suggests that it is probably a maser. It emanates from the Orion South region and is probably associated with the approaching part of outflow seen in CO. The 25-GHz maser associated with OMC-1 was observed quasi-simultaneously with the 6.7-GHz observations. No 25-GHz emission associated with the -1.1 km/s 6.7 GHz feature towards Orion South was detected.Comment: 11 pages, 5 figures, 4 tables, mn2e.cls included; accepted by MNRA

    Masers and Outflows in the W3(OH)/W3(H2O) region

    Full text link
    Methanol masers and molecular shock tracers were observed in the W3(OH)/W3(H2_2O) region with the BIMA array and the Onsala 20m radiotelescope. Characteristics of the outflows in the region are discussed. A model of the W3(OH) methanol maser formation region is constructed.Comment: 4 pages, 2 figures, numerous journal misprints are correcte
    corecore