60 research outputs found

    Inhibition of Aflatoxin Formation in Aspergillus Species by Peanut (Arachis hypogaea) Seed Stilbenoids in the Course of Peanut− Fungus Interaction

    Get PDF
    Common soil fungi, Aspergillus flavus and Aspergillus parasiticus, are opportunistic pathogens that invade preharvest peanut seeds. These fungi often produce carcinogenic aflatoxins that pose a threat to human and animal health through food chains and cause significant economic losses worldwide. Detection of aflatoxins and further processing of crops are mandated to ensure that contaminated agricultural products do not enter food channels. Under favorable conditions, the fungus-challenged peanut seeds produce phytoalexins, structurally related stilbenoids, capable of retarding fungal development. The purpose of the present study was to evaluate the potential influence of peanut phytoalexins on fungal development and aflatoxin formation in the course of peanut−fungus interaction. The present research revealed that during such interaction, aflatoxin formation was completely suppressed in A. flavus and A. parasiticus strains tested, when low concentrations of spores were introduced to wounded preincubated peanuts. In most of the experiments, when fungal spore concentrations were 2 orders of magnitude higher, the spores germinated and produced aflatoxins. Of all experimental seeds that showed fungal growth, 57.7% were aflatoxin-free after 72 h of incubation. The research provided new knowledge on the aflatoxin/phytoalexin formation in the course of peanut−fungus interaction

    Analysis of small RNA populationsgenerated in peanut leaves after exogenous application of dsRNA and dsDNA targeting aflatoxin synthesis genes

    Get PDF
    Previously, we have shown that RNA interference (RNAi) can prevent aflatoxin accumulation in transformed peanuts. To explore aflatoxin control by exogenous delivery of double-strand RNA (dsRNA) it is necessary to understand the generation of small RNA (sRNA) populations. We sequenced 12 duplicate sRNA libraries of in-vitro-grown peanut plants, 24 and 48 h after exogenous application of five gene fragments (RNAi-5x) related to aflatoxin biosynthesis in Aspergillus flavus. RNAi-5x was applied either as double-stranded RNA (dsRNA) or RNAi plasmid DNA (dsDNA). Small interfering RNAs (siRNAs) derived from RNAi-5x were significantly more abundant at 48 h than at 24 h, and the majority mapped to the fragment of aflatoxin efflux-pump gene. RNAi-5x-specific siRNAs were significantly, three to fivefold, more abundant in dsDNA than dsRNA treatments. Further examination of known micro RNAs related to disease-resistance, showed significant down-regulation of miR399 and up-regulation of miR482 in leaves treated with dsDNA compared to the control. These results show that sRNA sequencing is useful to compare exogenous RNAi delivery methods on peanut plants, and to analyze the efficacy of molecular constructs to generate siRNAs against specific gene targets. This work lays the foundation for non-transgenic delivery of RNAi in controlling aflatoxins in peanut

    \u3ci\u3eAspergillus\u3c/i\u3e and aflatoxin in groundnut (\u3ci\u3eArachis hypogaea\u3c/i\u3e L.) and groundnut cake in Eastern Ethiopia

    Get PDF
    This study was conducted to assess major Aspergillus species and aflatoxins associated with groundnut seeds and cake in Eastern Ethiopia and evaluate growers’ management practices. A total of 160 groundnut seed samples from farmers’ stores and 50 groundnut cake samples from cafe and restaurants were collected. Fungal isolation was done from groundnut seed samples. Aspergillus flavus was the dominant species followed by Aspergillus parasiticus. Aflatoxin analyses of groundnut seed samples were performed using ultra performance liquid chromatography; 22.5% and 41.3% of samples were positive, with total aflatoxin concentrations of 786 and 3135 ng g−1 from 2013/2014 and 2014/2015 samples, respectively. The level of specific aflatoxin concentration varied between 0.1 and 2526 ng g−1 for B2 and B1, respectively. Among contaminated samples of groundnut cake, 68% exhibited aflatoxin concentration below 20 ng g−1, while as high as 158 ng g−1 aflatoxin B1 was recorded. The study confirms high contamination of groundnut products in East Ethiopia

    Suppression of Aflatoxin Production in \u3ci\u3eAspergillus\u3c/i\u3e Species by Selected Peanut (\u3ci\u3eArachis hypogaea\u3c/i\u3e) Stilbenoids

    Get PDF
    Aspergillus flavus is a soil fungus that commonly invades peanut seeds and often produces carcinogenic aflatoxins. Under favorable conditions, the fungus-challenged peanut plant produces and accumulates resveratrol and its prenylated derivatives in response to such an invasion. These prenylated stilbenoids are considered peanut antifungal phytoalexins. However, the mechanism of peanut−fungus interaction has not been sufficiently studied. We used pure peanut stilbenoids arachidin-1, arachidin-3, and chiricanine A to study their effects on the viability of and metabolite production by several important toxigenic Aspergillus species. Significant reduction or virtually complete suppression of aflatoxin production was revealed in feeding experiments in A. flavus, Aspergillus parasiticus, and Aspergillus nomius. Changes in morphology, spore germination, and growth rate were observed in A. flavus exposed to the selected peanut stilbenoids. Elucidation of the mechanism of aflatoxin suppression by peanut stilbenoids could provide strategies for preventing plant invasion by the fungi that produce aflatoxins

    Transformation of Major Peanut (Arachis hypogaea) Stilbenoid Phytoalexins Caused by Selected Microorganisms

    Get PDF
    The peanut plant accumulates defensive stilbenoid phytoalexins in response to the presence of soil fungi, which in turn produce phytoalexin-detoxifying enzymes for successfully invading the plant host. Aspergillus spp. are opportunistic pathogens that invade peanut seeds; most common fungal species often produce highly carcinogenic aflatoxins. The purpose of the present research was to evaluate the in vitro dynamics of peanut phytoalexin transformation/detoxification by important fungal species. This work revealed that in feeding experiments, Aspergillus spp. from section Flavi were capable of degrading the major peanut phytoalexin, arachidin-3, into its hydroxylated homolog, arachidin-1, and a benzenoid, SB-1. However, Aspergillus niger from section Nigri as well as other fungal and bacterial species tested, which are not known to be involved in the infection of the peanut plant, were incapable of changing the structure of arachidin-3. The results of feeding experiments with arachidin-1 and resveratrol are also reported. The research provided new knowledge on the dynamics of peanut stilbenoid transformations by essential fungi. These findings may contribute to the elucidation of the phytoalexin detoxification mechanism involved in the infection of peanut by important toxigenic Aspergillus spp

    Sixteen Draft Genome Sequences Representing the Genetic Diversity of Aspergillus flavus and Aspergillus parasiticus Colonizing Peanut Seeds in Ethiopia

    Get PDF
    Draft genomes of 16 isolates of Aspergillus flavus Link and Aspergillus parasiticus Speare, identified as the predominant genotypes colonizing peanuts in four farming regions in Ethiopia, are reported. These data will allow mining for sequences that could be targeted by RNA interference to prevent aflatoxin accumulation in peanut seeds

    Evaluation of Leaf Spot Resistance in Wild \u3ci\u3eArachis\u3c/i\u3e Species of Section \u3ci\u3eArachis\u3c/i\u3e

    Get PDF
    Wild diploid Arachis species are potential sources of resistance to early (ELS) and late (LLS) leaf spot diseases caused by Passalora arachidicola (syn. Cercospora arachidicola Hori), and Nothopassalora personata (syn. Cercosporidium personatum (Berk. & Curt.) Deighton), respectively. Within section Arachis, limited information is available on the extent of genetic variation for resistance to these fungal pathogens. A collection of 78 accessions representing 15 wild species of Arachis section Arachis from the U.S peanut germplasm collection was evaluated for resistance to leaf spots. Screening was conducted under field (natural inoculum) conditions in Dawson, Georgia, during 2017 and 2018. Accessions differed significantly (P , 0.01) for all three disease variables evaluated, which included final defoliation rating, ELS lesion counts, and LLS lesion counts. Relatively high levels of resistance were identified for both diseases, with LLS being the predominant pathogen during the two years of evaluation. This research documents new sources of resistance to leaf spot diseases selected from an environment with high inoculum pressure. The presence of ELS and LLS enabled the selection of resistant germplasm for further introgression and pre-breeding

    Characterization of small RNA populations in non-transgenic andaflatoxin-reducing-transformed peanut

    Get PDF
    Aflatoxin contamination is a major constraint in food production worldwide. In peanut (Arachis hypogaea L.), these toxic and carcinogenic aflatoxins are mainly produced by Aspergillus flavus Link and A. parasiticus Speare. The use of RNA interference (RNAi) is a promising method to reduce or prevent the accumula-tion of aflatoxin in peanut seed. In this study, we performed high-throughput sequencing of small RNApopulations in a control line and in two transformed peanut lines that expressed an inverted repeattargeting five genes involved in the aflatoxin-biosynthesis pathway and that showed up to 100% less aflatoxin B1 than the controls. The objective was to determine the putative involvement of the smallRNA populations in aflatoxin reduction. In total, 41 known microRNA (miRNA) families and many novel miRNAs were identified. Among those, 89 known and 10 novel miRNAs were differentially expressed in the transformed lines. We furthermore found two small interfering RNAs derived from the inverted repeat, and 39 sRNAs that mapped without mismatches to the genome of A. flavus and were present only in the transformed lines. This information will increase our understanding of the effectiveness of RNAi and enable the possible improvement of the RNAi technology for the control of aflatoxins

    Mitogenome and Nuclear-encoded Fungicide-target Genes of Thecaphora frezii - Causal Agent of Peanut Smut

    Get PDF
    Background: Thecaphora frezii Carranza and Lindquist causes smut disease in peanut (Arachis hypogaea L.) resulting in up to 35% yield losses. Fungicides have shown ineffective in controlling the disease; whereas research on the molecular basis of that fungicide resistance has been hindered because of the lack of genetic information about T. frezii. The goal of this work was to provide molecular information about fungicide-target loci in T. frezii, including its mitochondrial genome (mitogenome) and critical nuclear-encoded genes. Results: Here we report the complete annotated mitogenome of T. frezii, a 123,773 bp molecule containing the standard 14 genes that form part of mitochondrial complexes I, III, IV and V, 22 transfer RNAs, small and large subunits of ribosomal RNA, DNA polymerase, ribonuclease P, GII-reverse transcriptase/maturase, nine hypothetical open-reading frames and homing endonucleases (LAGLIDADG, GIY-YIG, HEG). In addition, we report the full-length cDNA sequence of T. frezii cytochrome b (cob) and cytochrome oxidase 1 (cox1) genes; as well as partial sequences of T. frezii succinate dehydrogenase (sdhb), ergosterol biosynthesis (Erg4), cytochrome P450 (cyp51), and beta tubulin (β-tubulin) genes, which are respective targets of strobilurins, quinone oxidation inhibitors, triazoles and beta-tubulin inhibitor fungicides commonly used in the peanut crop. Translation of cob and sdhb genes in this particular T. frezii isolate suggests potential resistance to strobilurin and carboxamide fungicides. Conclusion: The mitogenome and nuclear-encoded gene sequences presented here provide the molecular tools to research T. frezii fungicide-target loci

    First draft genome and transcriptome of \u3ci\u3eCercosporidium personatum\u3c/i\u3e, causal agent of late leaf spot disease of peanut

    Get PDF
    Objective Two main fungal leaf spot diseases occur in peanut, namely early leaf spot (ELS) and late leaf spot (LLS), these cause a yearly average of $44 million losses. Limited genetic information, 3534 bp of sequencing, exists about the causal agent of LLS, Cercosporidium personatum (syn. Nothopassalora personata, syn. Phaeoisariopsis personata). The extremely slow growth of this fungus, approximately 1 cm colony in 6 months, and challenges in nucleic acid extractions have hindered research on LLS. Our goal in this work is to provide a reference genome for research on this pathogen. Results Whole genome and transcriptome sequencing of the LLS fungus were obtained. A total of 233,542,110 reads of the genome were de novo assembled resulting in 1061 scaffolds, and estimated genome size 27,597,787 bp. RNA sequencing resulted in 11,848,198 reads that were de novo assembled into 13,343 contigs. Genome annotation resulted in 10,703 putative genes. BUSCO analysis of the genome and annotation resulted in 91.1% and 89.5% completeness, respectively. Phylogenetic dendrograms for 5442 bp and 4401 bp of RNA Polymerase II largest and second largest subunits, and for 5474 bp of the ribosomal RNA cistron of C. personatum are presented in relation to closely related fungi
    • …
    corecore