103 research outputs found
Repair of oxidative DNA base damage in the host genome influences the HIV integration site sequence preference
Host base excision repair (BER) proteins that repair oxidative damage enhance HIV infection. These proteins include the oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1) and mutY homolog (MYH) as well as DNA polymerase beta (PolΞ²). While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency, the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining. These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in PolΞ² null cell lines complemented with active site point mutants of PolΞ². A DNA synthesis defective mutant, but not a 59dRP lyase mutant, rescued HIV infection efficiency to wild type levels; this suggeted PolΞ² DNA synthesis activity is not necessary while 59dRP lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference at the sequence level. Β© 2014 Bennett et al
Gastrointestinal Hyperplasia with Altered Expression of DNA Polymerase Ξ²
Background: Altered expression of DNA polymerase Ξ² (Pol Ξ²) has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol Ξ² over-expression has not yet been evaluated in a mouse model. Methodology/Principal Findings: We have recently developed a novel transgenic mouse model that over-expresses Pol Ξ². These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol Ξ² over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol Ξ² expression. We observed elevated expression of Pol Ξ² in stomach adenomas and thyroid follicular carcinomas, but reduced Pol Ξ² expression in esophageal adenocarcinomas and squamous carcinomas. Conclusions/Significance: These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation
The Base Excision Repair Pathway Is Required for Efficient Lentivirus Integration
An siRNA screen has identified several proteins throughout the base excision repair (BER) pathway of oxidative DNA damage as important for efficient HIV infection. The proteins identified included early repair factors such as the base damage recognition glycosylases OGG1 and MYH and the late repair factor POLΓ, implicating the entire BER pathway. Murine cells with deletions of the genes Ogg1, Myh, Neil1 and PolΓ recapitulate the defect of HIV infection in the absence of BER. Defective infection in the absence of BER proteins was also seen with the lentivirus FIV, but not the gammaretrovirus MMLV. BER proteins do not affect HIV infection through its accessory genes nor the central polypurine tract. HIV reverse transcription and nuclear entry appear unaffected by the absence of BER proteins. However, HIV integration to the host chromosome is reduced in the absence of BER proteins. Pre-integration complexes from BER deficient cell lines show reduced integration activity in vitro. Integration activity is restored by addition of recombinant BER protein POLΓ. Lentiviral infection and integration efficiency appears to depend on the presence of BER proteins
siRNA Screening of a Targeted Library of DNA Repair Factors in HIV Infection Reveals a Role for Base Excision Repair in HIV Integration
Host DNA repair enzymes have long been assumed to play a role in HIV replication,
and many different DNA repair factors have been associated with HIV. In order to
identify DNA repair pathways required for HIV infection, we conducted a targeted
siRNA screen using 232 siRNA pools for genes associated with DNA repair. Mapping
the genes targeted by effective siRNA pools to well-defined DNA repair pathways
revealed that many of the siRNAs targeting enzymes associated with the short
patch base excision repair (BER) pathway reduced HIV infection. For six siRNA
pools targeting BER enzymes, the negative effect of mRNA knockdown was rescued
by expression of the corresponding cDNA, validating the importance of the gene
in HIV replication. Additionally, mouse embryo fibroblasts (MEFs) lacking
expression of specific BER enzymes had decreased transduction by HIV-based
retroviral vectors. Examining the role BER enzymes play in HIV infection
suggests a role for the BER pathway in HIV integration
Fat free mass and obesity in relation to educational level
Β© 2009 SeppΓ€nen-Nuijten et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1
Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic Ξ²-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aagβ/β mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.National Institutes of Health (U.S.) (NIH grant R01-CA075576)National Institutes of Health (U.S.) (NIH grant R01-CA055042)National Institutes of Health (U.S.) (NIH grant R01-CA149261)National Institutes of Health (U.S.) (NIH grant P30-ES00002)National Institutes of Health (U.S.) (NIH grant P30-ES02109)National Center for Research Resources (U.S.) (grant number M01RR-01066)National Center for Research Resources (U.S.) (grant number UL1 RR025758, Harvard Clinical and Translational Science Center
Balancing repair and tolerance of DNA damage caused by alkylating agents
Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity
Production of Recombinant Human DNA Polymerase Delta in a Bombyx mori Bioreactor
Eukaryotic DNA polymerase Ξ΄ (pol Ξ΄) plays a crucial role in chromosomal DNA replication and various DNA repair processes. It is thought to consist of p125, p66 (p68), p50 and p12 subunits. However, rigorous isolation of mammalian pol Ξ΄ from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. While recombinant pol Ξ΄ isolated from infected insect cells have some problems of consistency in the quality of the preparations, and the yields are much lower. To address these deficiencies, we have constructed recombinant BmNPV baculoviruses using MultiBac system. This method makes the generation of recombinant forms of pol Ξ΄ containing mutations in any one of the subunits or combinations thereof extremely facile. From about 350 infected larvae, we obtained as much as 4 mg of pol Ξ΄ four-subunit complex. Highly purified enzyme behaved like the one of native form by rigorous characterization and comparison of its activities on poly(dA)/oligo(dT) template-primer and singly primed M13 DNA, and its homogeneity on FPLC gel filtration. In vitro base excision repair (BER) assays showed that pol Ξ΄ plays a significant role in uracil-intiated BER and is more likely to mediate LP BER, while the trimer lacking p12 is more likely to mediate SN BER. It seems likely that loss of p12 modulates the rate of SN BER and LP BER during the repair process. Thus, this work provides a simple, fast, reliable and economic way for the large-scale production of human DNA polymerase Ξ΄ with a high activity and purity, setting up a new platform for our further research on the biochemical properties of pol Ξ΄, its regulation and the integration of its functions, and how alterations in pol Ξ΄ function could contribute to the etiology of human cancer or other diseases that can result from loss of genomic stability
Dual Functions of ASCIZ in the DNA Base Damage Response and Pulmonary Organogenesis
Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/Γ-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis
- β¦