59 research outputs found

    Strong variations of cosmic ray intensity during thunderstorms and associated pulsations of the geomagnetic field

    Full text link
    Strong variations of the intensity of secondary cosmic rays during thunderstorms are found to be accompanied in some cases by very clear pulsations of the geomagnetic field. The experiment is carried out in the Baksan Valley, North Caucasus, the Carpet air shower array being used as a particle detector. Magnetic field measurements are made with high-precision magnetometers located deep underground in the tunnel of the Baksan Neutrino Observatory, several kilometers apart from the air shower array.Comment: 8 pages, 2 figure

    “Free Harbours”: Soviet-German Scientific Cooperation in Aircraft and Arctic Regions Research

    Get PDF
    Поступила в редакцию: 26.07.2021. Принята к печати: 12.10.2021.Submitted: 26.07.2021. Accepted: 12.10.2021.В 1924 г. немецкий воздухоплаватель Вальтер Брунс обратился к советскому правительству с предложением о сотрудничестве в области воздухоплавания. Он предлагал создать концессионную компанию по перевозке пассажиров дирижаблями из Европы в Восточную Азию, предоставив пунктам базирования дирижаблей право экстерриториальности, сделав их «вольными гаванями». Целью исследования является представление результатов советско-немецкого сотрудничества в области развития воздухоплавания и тех задач, которые планировалось решить с помощью дирижаблей при освоении арктических территорий. Анализ источников показал, что проект В. Брунса виделся советским чиновникам сомнительным с точки зрения окупаемости, и они не были готовы выделять средства на его осуществление. Власти были заинтересованы прежде всего в получении немецких технологий и локализации строительства грузоподъемных дирижаблей на советских верфях. В данной статье особое внимание уделяется тому, как проект В. Брунса оценивали эксперты, среди которых ведущую роль играли военные. Они выступили против регулярных перелетов через советскую территорию дирижаблей с иностранными экипажами, так как считали это потенциальной угрозой обороноспособности страны. Больший интерес для властей представлял другой проект В. Брунса по организации международной научной экспедиции по изучению Арктики. Практическим результатом этого проекта стал полет в 1931 г. немецкого дирижабля «Граф Цеппелин», в составе летной команды которого находились советские специалисты. Однако затем более значимым для советских властей стало сотрудничество с итальянским воздухоплавателем Умберто Нобиле, осуществлявшим в СССР постройку дирижаблей.In 1924, the German aeronaut Walter Bruns turned to the Soviet government with a proposal of cooperation in the field of aeronautics. He suggested creating a concession company for the transportation of passengers by airship from Europe to East Asia, granting the bases of airships the right of extraterritoriality, making them “free harbours”. The aim of this study is to present the results of Soviet-German cooperation in the development of aeronautics and the tasks that were planned to be solved with the help of airships in the development of the Arctic territories. Analysis of the sources demonstrates that V. Bruns’ project was seen by the Soviet officials as dubious in terms of recoupment, and they were not ready to allocate funds for its implementation. The authorities were interested, first of all, in obtaining German technologies and localising the construction of airships at Soviet shipyards. In this article, special attention is paid to how Bruns’ project was evaluated by experts, among whom the military played a leading role. They opposed regular flights of airships with foreign crews across Soviet territory, as they considered them a potential threat to the country’s defense. Bruns’ other project on the organisation of an international scientific expedition to study the Arctic was of greater interest to the authorities. The practical result of this project was the flight of Graf Zeppelin, a German airship, in 1931 whose crew included Soviet specialists. However, after that, the cooperation with the Italian aeronaut Umberto Nobile became more significant for the Soviet authorities and he began building airships in the USSR.Статья подготовлена при поддержке РНФ, проект № 20-78-10095 «Советская наука как индустрия: кадры, инфраструктура, организационно-управленческие практики (1920–1970-е гг.)».Research for this article was funded with the support of the Russian Science Foundation, project 20-78-10095 “Soviet Science as an Industry: Personnel, Infrastructure, Organisational and Management Practices (1920s–1970s)”

    СЕЙСМОГРАВИТАЦИОННЫЕ ПРОЦЕССЫ, СОПРОВОЖДАЮЩИЕ ЭВОЛЮЦИЮ СЕЙСМОФОКАЛЬНЫХ СТРУКТУР ЛИТОСФЕРЫ

    Get PDF
    Observations reflecting the structure and conditions of the seismogravitational process in the lithosphere were analyzed using the data on the catastrophic tsunamigenic earthquake of Maule (Chile) [Sobisevich et al., 2019]. Seismogravitational processes were first identified by a group of Soviet scientists from the city of Leningrad (now St. Petersburg) under the leadership of Professor E.M. Linkov [Linkov et al., 1982, 1990]. The study of these processes continues at the North Caucasus Geophysical Observatory of IPE RAS, which was established in 2004. Experiments are carried out using unique quartz tiltmeters designed by D.G. Gridnev, which ensure the stable registration of long–period seismogravitational processes on the scale of the Earth [Sobisevich, 2013; Sobisevich et al., 2017].На примере катастрофического цунамигенного землетрясения Мауле (Чили) анализируются результаты обсерваторских наблюдений, отражающие структуру и условия формирования сейсмогравитационного процесса в литосфере [Sobisevich et al., 2019]. Показано, что сейсмогравитационные процессы были впервые выделены группой советских ученых из г. Ленинграда (ныне г. Санкт-Петербург) под руководством профессора Е.М. Линькова [Linkov et al., 1982, 1990]. Изучение этих процессов продолжается на базе Северокавказской геофизической обсерватории ИФЗ РАН, которая была развернута в 2004 г. В экспериментах задействованы уникальные кварцевые наклономеры системы Д.Г. Гриднева, которые обеспечивают устойчивую регистрацию длиннопериодных сейсмогравитационных процессов в масштабах Земли [Sobisevich, 2013; Sobisevich et al., 2017]

    VIBROSEISMIC INVESTIGATIONS OF THE BAIKAL RIFT ZONE WITH A POWERFUL CVO-100 VIBRATOR

    Get PDF
    The article provides an overview of vibroseismic studies carried out in the Baikal rift zone using LargeScale Research Facilities – a powerful CVO-100 seismic vibrator, installed at the South Baikal geodynamic test site SB RAS. Research is carried out according to several methods focused on different tasks: study of the structure of the Earth’s crust and upper mantle in the BRZ, active vibroseismic monitoring, and verification of velocity models of the Earth’s crust. To study the structure of the Earth’s crust and the upper mantle, there were done the vibrator-generated wavefield recordings at the stationary regional network of seismic stations in the Buryat and Baikal branches of the Federal Research Center of the GS RAS, as well as the experimental studies involving the mobile networks deployment (ICMMG SB RAS, SIPE RAS, GIN SB RAS). The aim of the work is to carry out deep vibroseismic sounding of the Earth’s crust (vibro-DSS) at the junction of the Siberian platform, the BRZ and the Sayan-Baikal folded area. The methodology is based on the study of vibration seismograms with the determination of arrival times of the main groups of waves and their correlation with the velocity models of the Earth’s crust in the BRZ. A CVO-100 vibrator and a regional network of seismic stations are used to carry out active vibroseismic monitoring of the southern part of the BRZ. The active monitoring area is about 500×200 km. During vibroseismic monitoring, there were done thorough studies of seasonal variations of the vibrator-generated wavefield and the development of techniques for spectral correction of seismograms. A seismic vibrator CVO-100 was used to carry out experimental verification of the velocity models of the Earth’s crust, developed based on the BEST and PASSCAL experimental data. The vibrational deep seismic sounding (vibro-DSS) on the Baikal – Ulan Bator profile was carried out by the ICMMG SB RAS, GIN SB RAS and BB FRC GS RAS (Russia) in cooperation with IAG MAN (Mongolia)

    ВИБРОСЕЙСМИЧЕСКИЕ ИССЛЕДОВАНИЯ БАЙКАЛЬСКОЙ РИФТОВОЙ ЗОНЫ С МОЩНЫМ ВИБРАТОРОМ ЦВО-100

    Get PDF
    The article provides an overview of vibroseismic studies carried out in the Baikal rift zone using LargeScale Research Facilities – a powerful CVO-100 seismic vibrator, installed at the South Baikal geodynamic test site SB RAS. Research is carried out according to several methods focused on different tasks: study of the structure of the Earth’s crust and upper mantle in the BRZ, active vibroseismic monitoring, and verification of velocity models of the Earth’s crust. To study the structure of the Earth’s crust and the upper mantle, there were done the vibrator-generated wavefield recordings at the stationary regional network of seismic stations in the Buryat and Baikal branches of the Federal Research Center of the GS RAS, as well as the experimental studies involving the mobile networks deployment (ICMMG SB RAS, SIPE RAS, GIN SB RAS). The aim of the work is to carry out deep vibroseismic sounding of the Earth’s crust (vibro-DSS) at the junction of the Siberian platform, the BRZ and the Sayan-Baikal folded area. The methodology is based on the study of vibration seismograms with the determination of arrival times of the main groups of waves and their correlation with the velocity models of the Earth’s crust in the BRZ. A CVO-100 vibrator and a regional network of seismic stations are used to carry out active vibroseismic monitoring of the southern part of the BRZ. The active monitoring area is about 500×200 km. During vibroseismic monitoring, there were done thorough studies of seasonal variations of the vibrator-generated wavefield and the development of techniques for spectral correction of seismograms. A seismic vibrator CVO-100 was used to carry out experimental verification of the velocity models of the Earth’s crust, developed based on the BEST and PASSCAL experimental data. The vibrational deep seismic sounding (vibro-DSS) on the Baikal – Ulan Bator profile was carried out by the ICMMG SB RAS, GIN SB RAS and BB FRC GS RAS (Russia) in cooperation with IAG MAN (Mongolia). В статье приведен обзор вибросейсмических исследований, выполняемых в Байкальской рифтовой зоне с использованием уникальной научной установки – мощного сейсмического вибратора ЦВО-100, установленного на Южно-Байкальском геодинамическом полигоне СО РАН. Работы проводятся по нескольким методикам, ориентированным на решение различных задач: исследование структуры земной коры и верхней мантии в Байкальской рифтовой зоне (БРЗ), активный вибросейсмический мониторинг, верификацию скоростных моделей земной коры. Для изучения структуры земной коры и верхней мантии проводится регистрация волнового поля вибратора на стационарной региональной сети сейсмостанций Бурятского и Байкальского филиалов ФИЦ ЕГС РАН, а также экспериментальные исследования с развертыванием мобильных сейсмических групп (ИВМиМГ СО РАН, ИФЗ РАН, ГИН СО РАН). Целью работ является проведение глубинного вибросейсмического зондирования земной коры (вибро-ГСЗ) в зоне сочленения Сибирской платформы, БРЗ и Саяно-Байкальской складчатой области. Основу методики составляет изучение вибрационных сейсмограмм с определением времен прихода основных групп волн и их увязка со скоростными моделями земной коры в БРЗ. С использованием вибратора ЦВО-100 и региональной сети сейсмических станций проводится активный вибросейсмический мониторинг южной части БРЗ. Область активного мониторинга составляет примерно 500×200 км. При проведении вибросейсмического мониторинга были детально исследованы сезонные вариации волнового поля вибратора и разработаны методики спектральной коррекции сейсмограмм. С использованием сейсмического вибратора ЦВО-100 была выполнена экспериментальная часть работ по верификации скоростных моделей земной коры, построенных по данным экспериментов BEST и PASSCAL. Работы по вибро-ГСЗ на профиле Байкал – Улан-Батор проводились ИВМиМГ СО РАН, ГИН СО РАН, Бурятским филиалом ФИЦ ЕГС РАН (Россия) совместно с ИАГ МАН (Монголия).

    MUD VOLCANO SHUGO, DEPTH STRUCTURE AND MECHANISMS OF ACTIVITY

    No full text
    Most mud volcanoes are located along large tectonic zones within the Alpine and Central Asian folded regions, the Pacific mobile belt and rift regions of the Atlantic and Indian oceans. One of the basic conditions for the functioning of the mobile crust of mud volcanic processes in the earth's crust is the location and creasing into folds of the complex of sedimentary formations. It is these geological conditions that determine the activity of many mud volcanoes within the Kerch-Taman mud volcanic province, including the mud volcano Shugo. Long-term studies of the phenomenon of mud volcanism, carried out under the guidance and with the direct participation of Academician Ye.F. Shnyukov created the fundamental foundations of a geological and geophysical approach to a deeper understanding of the conditions of formation and mechanisms of activity of the volcanoes of the Kerch and Taman Peninsulas. This work is devoted to the results of seismological and geoacoustic studies of the Shugo volcano, expanding our ideas about the features of the deep structure of the studied object and contributing to the further development of the ideas of the outstanding scientist, academician of the National Academy of Sciences of Ukraine Ye.F. Shnyukov

    Förstärkning av energi och Q-faktor hos en ickelinjär resonator genom ökning av dess förluster

    No full text
    A phenomenon that is paradoxical at first sight is studied: an appropriately-organized energy outflow from a resonator cavity results not in the attenuation of nonlinear vibrations but in their noticeable enhancement. An increase in the resonator Q-factor and in the energy accumulated in it is well pronounced when the frequencies of the higher harmonics generated in a nonlinear medium are close to the natural frequencies of the resonator. An important example of a nonlinear system with the necessary properties is an acoustic resonator with selective losses.Det paradoxala beteendet att en resonators enegriinnehåll och Q-faktor kan öka när dess dämpning ökar beskrivs
    corecore