294 research outputs found
Investigation on the 48Ca+249-252Cf reactions synthesizing isotopes of the superheavy element 118
The study of the Ca+Cf reactions in a wide energy
interval around the external barrier has been achieved with the aim of
investigating the dynamical effects of the entrance channel via the Ca
induced reactions on the Cf targets and to analyze the influence of
odd and even neutron composition in target on the capture, quasifission and
fusion cross sections. Moreover, we also present the results of the individual
evaporation residue excitation functions obtained from the de-excitation
cascade of the various even-odd and even-even 118 superheavy
compound nuclei reached in the studied reactions, and we compare our results of
the 118 evaporation residue yields obtained in the synthesis process of
the Ca+Cf reactions with the experimental data obtained in
the Ca+Cf experiment carried out at the Flerov Laboratory of
Nuclear Reactions of Dubna.Comment: 10 pages, 14 figures, Accepted for publication in Phys. Rev.
Relativistic Energy Density Functional Description of Shape Transition in Superheavy Nuclei
Relativistic energy density functionals (REDF) provide a complete and
accurate, global description of nuclear structure phenomena. A modern
semi-empirical functional, adjusted to the nuclear matter equation of state and
to empirical masses of deformed nuclei, is applied to studies of shapes of
superheavy nuclei. The theoretical framework is tested in a comparison of
calculated masses, quadrupole deformations, and potential energy barriers to
available data on actinide isotopes. Self-consistent mean-field calculations
predict a variety of spherical, axial and triaxial shapes of long-lived
superheavy nuclei, and their alpha-decay energies and half-lives are compared
to data. A microscopic, REDF-based, quadrupole collective Hamiltonian model is
used to study the effect of explicit treatment of collective correlations in
the calculation of Q{\alpha} values and half-lives.Comment: 23 pages, 10 figure
Relativistic mean field study of the properties of Z=117 nucleus and the decay chains of 117 isotopes
We have calculated the binding energy, root-mean-square radius and quadrupole
deformation parameter for the recently synthesized superheavy element Z=117,
using the axially deformed relativistic mean field (RMF) model. The calculation
is extended to various isotopes of Z=117 element, strarting from A=286 till
A=310. We predict almost spherical structures in the ground state for almost
all the isotopes. A shape transition appears at about A=292 from prolate to a
oblate shape structures of Z=117 nucleus in our mean field approach. The most
stable isotope (largest binding energy per nucleon) is found to be the
117 nucleus. Also, the Q-value of -decay and the
half-lives are calculated for the -decay chains of
117 and 117, supporting the magic numbers at N=172 and/ or 184.Comment: 6 Pages and 8 Figure
Alpha decay chains study for the recently observed superheavy element Z=117 within the Isospin Cluster Model
The recently observed -decay chains were produced by
the fusion reactions with target and projectile at Dubna
in Russia. The reported cross-sections for the mentioned reaction are
pb and =1.3(+1.5,-0.6) at and
, respectively. The Q-values of -decay and the half-lives
(s) are calculated for the -decay chains of
nuclei, within the framework of Isospin Cluster Model (ICM). In
the ICM model the proximity energy is improved by using the isospin dependent
radius of parent, daughter and alpha particle. The binding energy (i=1,2) of any nucleus of mass number A and atomic number Z was
obtained from a phenomenological and more genaralized BW formula given by
\cite{samanta02}. The calculated results in ICM are compared with the
experimental results and other theoretical Macro-Microscopic(M-M), RMF(with NL3
and SFU Gold forces parameter) model calculations. The estimated values of
-decay half-lives are in good agreement with the recent data. The ICM
calculation is in favor of the persence of magic number at N=172
Analytical relationship for the cranking inertia
The wave function of a spheroidal harmonic oscillator without spin-orbit
interaction is expressed in terms of associated Laguerre and Hermite
polynomials. The pairing gap and Fermi energy are found by solving the BCS
system of two equations. Analytical relationships for the matrix elements of
inertia are obtained function of the main quantum numbers and potential
derivative. They may be used to test complex computer codes one should develop
in a realistic approach of the fission dynamics. The results given for the
Pu nucleus are compared with a hydrodynamical model. The importance of
taking into account the correction term due to the variation of the occupation
number is stressed.Comment: 12 pages, 4 figure
A Particle number conserving shell-correction method
The shell correction method is revisited. Contrary to the traditional
Strutinsky method, the shell energy is evaluated by an averaging over the
number of particles and not over the single-particle energies, which is more
consistent with the definition of the macroscopic energy. In addition, the
smooth background is subtracted before averaging the sum of single-particle
energies, which significantly improves the plateau condition and allows to
apply the method also for nuclei close to the proton or neutron drip lines. A
significant difference between the shell correction energy obtained with the
traditional and the new method is found in particular for highly degenerated
single-particle spectra (as i.e. in magic nuclei) while for deformed nuclei
(where the degeneracy is lifted to a large extent) both estimates are close,
except in the region of super or hyper-deformed states.Comment: 11 pages in LaTeX, 7 figure
Investigation of the quasifission process by theoretical analysis of experimental data of fissionlike reaction products
The fusion excitation function is the important quantity in planning
experiments for the synthesis of superheavy elements. Its values seem to be
determined by the experimental study of the hindrance to complete fusion by the
observation of mass, angular and energy distributions of the fissionlike
fragments. There is ambiguity in establishment of the reaction mechanism
leading to the observed binary fissionlike fragments. The fissionlike fragments
can be produced in the quasifission, fast fission, and fusion-fission processes
which have overlapping in the mass (angular, kinetic energy) distributions of
fragments. The branching ratio between quasifission and complete fusion
strongly depends on the characteristics of the entrance channel. In this paper
we consider a wide set of reactions (with different mass asymmetry and mass
symmetry parameters) with the aim to explain the role played by many quantities
on the reaction mechanisms. We also present the results of study of the
Ca+Bk reaction used to synthesize superheavy nuclei with Z = 117
by the determination of the evaporation residue cross sections and the
effective fission barriers of excited nuclei formed along the
de-excitation cascade of the compound nucleus.Comment: 21 pages, 15 figures, 2 table
Shell corrections for finite depth potentials with bound states only
A new method of calculating unique values of ground-state shell corrections
for finite depth potentials is shown, which makes use of bound states only. It
is based on (i) a general formulation of extracting the smooth part from any
fluctuating quantity proposed by Strutinsky and Ivanjuk, (ii) a generalized
Strutinsky smoothing condition suggested recently by Vertse et al., and (iii)
the technique of the Lanczos factors. Numerical results for some
spherical heavy nuclei (Sn, Pb and 114) are
presented and compared to those obtained with the Green's function oscillator
expansion method.Comment: 5 pages, 2 tables and 3 figures. Accepted in Physics Letters
The possible existence of Hs in nature from a geochemical point of view
A hypothesis of the existence of a long-lived isotope 271Hs in natural
molybdenites and osmirides is considered from a geochemical point of view. It
is shown that the presence of Hs in these minerals can be explained only by
making an additional ad hoc assumption on the existence of an isobaric pair of
271Bh-271Hs. This assumption could be tested by mass-spectrometric measurements
of U, Pb, Kr, Xe, and Zr isotopic shifts.Comment: 5 pages, no figures. Physics of Particles and Nuclei Letters, 2006,
Vol. 3, No. 3, pp. 165-168 in pres
Resonant structure of space-time of early universe
A new fully quantum method describing penetration of packet from internal
well outside with its tunneling through the barrier of arbitrary shape used in
problems of quantum cosmology, is presented. The method allows to determine
amplitudes of wave function, penetrability and reflection relatively the barrier (accuracy of the method: ), coefficient of penetration (i.e. probability of
the packet to penetrate from the internal well outside with its tunneling),
coefficient of oscillations (describing oscillating behavior of the packet
inside the internal well). Using the method, evolution of universe in the
closed Friedmann--Robertson--Walker model with quantization in presence of
positive cosmological constant, radiation and component of generalize Chaplygin
gas is studied. It is established (for the first time): (1) oscillating
dependence of the penetrability on localization of start of the packet; (2)
presence of resonant values of energy of radiation , at which the
coefficient of penetration increases strongly. From analysis of these results
it follows: (1) necessity to introduce initial condition into both
non-stationary, and stationary quantum models; (2) presence of some definite
values for the scale factor , where start of expansion of universe is the
most probable; (3) during expansion of universe in the initial stage its radius
is changed not continuously, but passes consequently through definite discrete
values and tends to continuous spectrum in latter time.Comment: 18 pages, 14 figures, 4 table
- …
