573 research outputs found

    Expression of TNF-alpha-dependent apoptosis-related genes in the peripheral blood of Malagasy subjects with tuberculosis.

    Get PDF
    The majority of Mycobacterium tuberculosis (Mtb) infections remain asymptomatic with only up to 10% progressing to clinical tuberculosis. However, the constituents of the effective "protective immunity" against tuberculosis responsible for containing most infections remain unknown. Evaluating gene transcriptional profiles in tuberculosis clinical cohorts is one approach to understanding the spectrum of tuberculosis progression. It is clear that apoptosis plays a role in the control of tuberculosis but the utility of apoptosis-related genes as surrogate markers of protection against tuberculosis has not been well investigated. To characterize potential surrogate markers that could discriminate different phases of the clinical tuberculosis spectrum, we investigated gene expression of several TNF-alpha dependent apoptotic genes (TNFR1, TNFR2, FLICE, FLIPs) by real-time RT-PCR of peripheral blood cells from cohorts of individuals with active tuberculosis or potential exposure to tuberculosis. Newly diagnosed tuberculosis patients (n = 23), their close household contacts (n = 80), and community controls (n = 46) were tested at intervals over a period of up to two years. Latent infection or previous Mtb contact was assessed by ELISPOT and TST and complete blood counts were performed during the follow up. Results showed significant upregulation of FLIPs expression by infected individuals regardless of clinical status at entry to the study. A higher percentage of lymphocytes was found in the infected household contacts that remained healthy. In contrast, in individuals with active TB, a significant upregulation of TNFR2 expression, a significantly higher percentage of monocytes and a significantly decreased lymphocyte count were seen, compared to subjects that remained healthy. Moreover, the household contacts who subsequently developed signs of TB also had a significantly high number of monocytes. These data suggest tuberculosis may be associated with decreased T-cell survival (perhaps due to apoptosis) while inhibition of apoptosis in monocytes could lead to a relative increase in these cells: a situation predicted to favour Mtb

    Serologically defined variations in malaria endemicity in Pará state, Brazil

    Get PDF
    BACKGROUND: Measurement of malaria endemicity is typically based on vector or parasite measures. A complementary approach is the detection of parasite specific IgG antibodies. We determined the antibody levels and seroconversion rates to both P. vivax and P. falciparum merozoite antigens in individuals living in areas of varying P. vivax endemicity in Pará state, Brazilian Amazon region. METHODOLOGY/PRINCIPAL FINDINGS: The prevalence of antibodies to recombinant antigens from P. vivax and P. falciparum was determined in 1,330 individuals. Cross sectional surveys were conducted in the north of Brazil in Anajás, Belém, Goianésia do Pará, Jacareacanga, Itaituba, Trairão, all in the Pará state, and Sucuriju, a free-malaria site in the neighboring state Amapá. Seroprevalence to any P. vivax antigens (MSP1 or AMA-1) was 52.5%, whereas 24.7% of the individuals were seropositive to any P. falciparum antigens (MSP1 or AMA-1). For P. vivax antigens, the seroconversion rates (SCR) ranged from 0.005 (Sucuriju) to 0.201 (Goianésia do Pará), and are strongly correlated to the corresponding Annual Parasite Index (API). We detected two sites with distinct characteristics: Goianésia do Pará where seroprevalence curve does not change with age, and Sucuriju where seroprevalence curve is better described by a model with two SCRs compatible with a decrease in force of infection occurred 14 years ago (from 0.069 to 0.005). For P. falciparum antigens, current SCR estimates varied from 0.002 (Belém) to 0.018 (Goianésia do Pará). We also detected a putative decrease in disease transmission occurred ∼29 years ago in Anajás, Goianésia do Pará, Itaituba, Jacareacanga, and Trairão. CONCLUSIONS: We observed heterogeneity of serological indices across study sites with different endemicity levels and temporal changes in the force of infection in some of the sites. Our study provides further evidence that serology can be used to measure and monitor transmission of both major species of malaria parasite

    SEASONAL DISTRIBUTION OF MALARIA VECTORS (DIPTERA: CULICIDAE) IN RURAL LOCALITIES OF PORTO VELHO, RONDÔNIA, BRAZILIAN AMAZON

    Get PDF
    We conducted a survey of the malaria vectors in an area where a power line had been constructed, between the municipalities of Porto Velho and Rio Branco, in the states of Rondônia and Acre, respectively. The present paper relates to the results of the survey of Anopheles fauna conducted in the state of Rondônia. Mosquito field collections were performed in six villages along the federal highway BR 364 in the municipality of Porto Velho, namely Porto Velho, Jaci Paraná, Mutum Paraná, Vila Abunã, Vista Alegre do Abunã, and Extrema. Mosquito captures were performed at three distinct sites in each locality during the months of February, July, and October 2011 using a protected human-landing catch method; outdoor and indoor captures were conducted simultaneously at each site for six hours. In the six sampled areas, we captured 2,185 mosquitoes belonging to seven Anopheles species. Of these specimens, 95.1% consisted of Anopheles darlingi, 1.8% An. triannulatus l.s., 1.7% An. deaneorum, 0.8% An. konderi l.s., 0.4 An. braziliensis, 0.1% An. albitarsis l.s., and 0.1% An. benarrochi. An. darlingi was the only species found in all localities; the remaining species occurred in sites with specific characteristics

    TRPM2 channel deficiency prevents delayed cytosolic Zn²⁺ accumulation and CA1 pyramidal neuronal death after transient global ischemia

    No full text
    Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn²⁺ level ([Zn²⁺]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia-reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn²⁺]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn²⁺]c but abolished the cytosolic Zn²⁺ accumulation during reperfusion as well as ROS-elicited increases in the [Zn²⁺]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn²⁺]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury
    corecore