244 research outputs found

    Estimulação do enraizamento de estacas de Vitis rotundifolia Michx

    Get PDF
    A videira muscadínia, nativa da Flórida, têm-se distinguido pela produtividade, resistência a pragas e doenças e pela característica de desbastar-se facilmente na colheita, possibilitando sua comercialização em cestas, de forma semelhante ao morango. As dificuldades na propagação desse grupo de videira têm impedido sua disseminação na região tropical úmida, em áreas onde a exploração de outras videiras tem sido dificultada pela alta incidência de doenças. O objetivo desse trabalho foi estabelecer o sistema mais adequado de propagação vegetativa de Vitis rotundifolia Michx., utilizando estacas a picáis, medianas e basais, tratamentos com auxina e com baixa temperatura. Verificou-se que o enraizamento de estacas basais e medianas da videira muscadínia foi mais eficiente do que o de estacas apicais. Tratamento das estacas com temperatura de 4°C por 24 horas, ou imersão das estacas em solução de Exuberone 10 e 20 ml.l-1, promoveram o enraizamento de estacas medianas e basais, respectivamente. O desenvolvimento da parte aérea das estacas basais e medianas da videira mostrou-se superior no tratamento com baixa temperatura.The muscadine grape (Vitis rotundifolia Michx.) is native to Florida and has been cultivated for many years in U.S.A. It is harvested as single berries instead of in bunches and has small leaves. The fruit skin is thicker than those of bunch-type grapes. One reason for its popularity is that the muscadine is seldom seriously affected by diseases or insects. The muscadine grape is not readily propagated by hardwood cuttings, therefore the present work was carried out to develop a method for commercial propagation of its cuttings, using treatments with growth regulators (auxins) and low temperature. The results showed that the rooting of both basal and middle shoots of muscadine grape is better than the rooting of terminal sections of the shoots. Cuttings treated with low temperature (4°C) during 24 hours, or immersion of the cutting's bases in solutions of Exuberone 10 and 20 ml.l-1, promoted rooting of middle and basal cuttings, respectively. The growth of leaves in both basal and middle cuttings was superior in the treatment with low temperature

    Nonequilibrium fluctuations of a remodeling in vitro cytoskeleton

    Get PDF
    Motor proteins actively contract the actin cytoskeleton of cells and thereby give rise to nonequilibrium fluctuations as well as changes in the architecture of the cytoskeleton. Here, we show, by video microrheology of a reconstituted cytoskeleton, that motors generate time-dependent nonequilibrium fluctuations, which evolve as the network is remodeled. At earlier times, the fluctuation spectrum is dominated by strong non-Gaussian fluctuations, which arise from large displacements. At later times, directed displacements are infrequent and finally disappear. We show that these effects are due to contractile coarsening of the network into large actin-myosin foci. © 2012 American Physical Society

    Overall Picture Of Expressed Heat Shock Factors In Glycine Max, Lotus Japonicusand Medicago Truncatula

    Get PDF
    Heat shock (HS) leads to the activation of molecular mechanisms, known as HS-response, that prevent damage and enhance survival under stress. Plants have a flexible and specialized network of Heat Shock Factors (HSFs), which are transcription factors that induce the expression of heat shock proteins. The present work aimed to identify and characterize the Glycine maxHSF repertory in the Soybean Genome Project (GENOSOJA platform), comparing them with other legumes (Medicago truncatulaand Lotus japonicus) in view of current knowledge of Arabidopsis thaliana. The HSF characterization in leguminous plants led to the identification of 25, 19 and 21 candidate ESTs in soybean, Lotusand Medicago, respectively. A search in the SuperSAGE libraries revealed 68 tags distributed in seven HSF gene types. From the total number of obtained tags, more than 70% were related to root tissues (water deficit stress libraries vs.controls), indicating their role in abiotic stress responses, since the root is the first tissue to sense and respond to abiotic stress. Moreover, as heat stress is related to the pressure of dryness, a higher HSF expression was expected at the water deficit libraries. On the other hand, expressive HSF candidates were obtained from the library inoculated with Asian Soybean Rust, inferring crosstalk among genes associated with abiotic and biotic stresses. Evolutionary relationships among sequences were consistent with different HSF classes and subclasses. Expression profiling indicated that regulation of specific genes is associated with the stage of plant development and also with stimuli from other abiotic stresses pointing to the maintenance of HSF expression at a basal level in soybean, favoring its activation under heat-stress conditions. © 2012, Sociedade Brasileira de Genética.35SUPPL.1247259Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410Baniwal, S.K., Chan, K.Y., Scharf, K.-D., Nover, L., Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4* (2007) J Biol Chem, 282, pp. 3605-3613Bharti, K., Schimidt, E., Lyck, R., Bublak, D., Scharf, K.-D., Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum (2000) Plant J, 22, pp. 355-365Bharti, K., von Koskull-Döring, P., Bharti, S., Kumar, P., Tintschl-Körbitzer, A., Treuter, E., Nover, L., Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP (2004) Plant Cell, 16, pp. 1521-1535Efeoglu, B., Heat shock proteins and heat shock response in plants (2009) G U J Sci, 22, pp. 67-75Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D., Cluster analysis and display of genome-wide expression patterns (1998) Proc Natl Acad Sci USA, 95, pp. 14863-14868Fehr, W.R., Caviness, C.E., Burmood, D.T., Pennington, I.S., Stage of development descriptions for soybeans, Glycine max (L.) Merrill (1971) Crop Sci, 11, pp. 929-931Fehr, W.R., Caviness, C.E., (1977) Stage of Soybean Development, p. 12. , Special Report n. 80. Ames, Iowa State University of Science and Technology, IowaGlombitza, S., Dubuis, P.-H., Thulke, O., Welzl, G., Bovet, L., Götz, M., Affenzeller, M., Asnaghi, C., Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism (2004) Plant Mol Biol, 54, pp. 817-835Heerklotz, D., Doring, P., Bonzelius, F., Winkelhaus, S., Nover, L., The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2 (2001) Mol Cell Biol, 21, pp. 1759-1768Hoagland, D., Arnon, D.I., The water culture method for growing plants without soil (1950) Calif Agric Exp Stn Circ, 347, pp. 1-32Hsu, S.-F., Lai, H.-C., Jinn, T.-L., Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis (2010) Plant Physiol, 153, pp. 773-784Hu, W., Hu, G., Han, B., Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice (2009) Plant Sci, 176, pp. 583-590Kido, E.A., Barbosa, P.K., Ferreira Neto, J.C.R., Pandolfi, V., Houllou-Kido, L.M., Crovella, S., Benko-Iseppon, A.M., Identification of plant protein kinases in response to abiotic and biotic stresses using SuperSAGE (2011) Curr Prot Pept Sci, 12, pp. 643-656Kotak, S., Port, M., Ganguli, A., Bicker, F., von Koskull-Doring, P., Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class a Hsfs with AHA and NES motifs essential for activator function and intracellular localization (2004) Plant J, 39, pp. 98-112Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., Scharf, K.D., Complexity of the heat stress response in plants (2007) Curr Opin Plant Biol, 10, pp. 310-316Li, H.-Y., Chang, C.-S., Lu, L.-S., Liu, C.-A., Chan, M.-T., Charng, Y.-Y., Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato (2004) Bot Bull Acad Sin, 44, pp. 129-140Li, M., Berendzen, K.W., Schoffl, F., Promoter specificity and interactions between early and late Arabidopsis heat shock factors (2010) Plant Mol Biol, 73, pp. 559-567McClean, P.E., Mamidi, S., McConnell, M., Chikara, S., Lee, R., Synteny mapping between common bean and soybean reveals extensive blocks of shared loci (2010) BMC Genomics, 11, pp. e184Miller, G., Mittler, R., Could heat shock transcription factors function as hydrogen peroxide sensors in plant? (2006) Ann Bot, 98, pp. 279-288Mittal, D., Chakrabarti, S., Sarkar, A., Singh, A., Grover, A., Heat shock factor gene family in rice: Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses (2009) Plant Physiol Biochem, 47, pp. 785-795Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.-S.P., In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean (2009) DNA Res, 16, pp. 353-369Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.-S.P., LegumeTFDB: An in-tegrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors (2009) Bioinformatics, 26, pp. 290-291Nascimento, L.C., Costa, G.G.L., Binneck, E., Pereira, G.A.G., Caraz-Zolle, M.F., A web-based bioinformatics interface applied to Genosoja Project: Databases and pipelines (2012) Genet Mol Biol, 35 (SUPPL. 1), pp. 203-211Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., Scharf, K.-D., Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? (2001) Cell Stress Chap, 6, pp. 177-189Pirkkala, L., Nykanen, I., Sistonen, L., Roles of the heat shock transcription factors in regulation of the heat shock response and beyond (2001) FASEB J, 15, pp. 1118-1131Ruelland, E., Zachowski, A., How plants sense temperature (2010) Environ Exp Bot, 69, pp. 225-232Sato, Y., Yokoya, S., Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7 (2008) Plant Cell Rep, 27, pp. 329-334Scharf, K.-D., Rose, S., Thierfelder, J., Nover, L., Two cDNAs for tomato heat stress transcription factors (1993) Plant Physiol, 102, pp. 1355-1356Scharf, K.-D., Rose, S., Zott, W., Schoffl, F., Nover, L., Three tomato genes code for heat stress transcription factors with a regionofremarkable homology to the DNA-binding domain of the yeast HSF (1990) EMBO J, 9, pp. 4495-4501Schöff, F., Prändl, R., Reindl, A., Regulation of the heat-shock response (1998) Plant Physiol, 117, pp. 1135-1141Sung, D.-Y., Kaplan, F., Lee, K.-J., Guy, C.L., Acquired tolerance to temperature extremes (2003) Trends Plant Sci, 8, pp. 179-187Swindell, W.R., Huebner, M., Weber, A.P., Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways (2007) BMC Genomics, 8, pp. e125Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739Treshow, M., (1970) Environment and Plant Response, p. 421. , McGraw-Hill Company, New YorkTreuter, E., Nover, L., Ohme, K., Scharf, K.-D., Promoter specificity and deletion analysis of three tomato heat stress transcription factors (1993) Mol Gen Genet, 240, pp. 113-125Yamada, K., Fukao, Y., Hayashi, M., Fukazawa, M., Suzuki, I., Nishimura, M., Cytosolic HSP90 regulated the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana (2007) J Biol Chem, 282, pp. 37794-3780

    Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea

    Get PDF
    As hypoxia-induced inflammatory angiogenesis may contribute to sickle cell disease manifestations, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from steady-state sickle cell anemia patients presented elevated concentrations of pro-angiogenic factors (Angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly augmenting endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice, compared with non-sickle cell disease mice, consistent with an upregulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy displayed a pro-angiogenic profile and had more significant effects on endothelial cell proliferation and capillary formation than plasma of patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factor profile, in association with an inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, sickle cell anemia and retinopathic hemoglobin SC individuals present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy for preventing progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the benefits and drawbacks of the potent anti-angiogenic effects of hydroxyurea should be clarified.As hypoxia-induced inflammatory angiogenesis may contribute to sickle cell disease manifestations, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated an1006730739FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2008/57441-0; 2009/16334-0565036/201

    Caracterização e Análise dos Processos Produtivos em Empresas Agro-Alimentares

    Get PDF
    Através de um diagnóstico inicial baseado na análise do conhecimento, informação existente, recolha de informação e medição de parâmetros num conjunto de empresas (60) dos subsetores dos produtos cárneos, hortofrutícolas, lácteos e panificação apresenta-se através do presente relatório a caracterização dos processos e atividades produtivas em empresas do setor agroalimentar. Executando uma análise técnica ao estado da arte, através do estudo da organização das atividades produtivas, nível tecnológico e tendências no desenvolvimento de produtos, permite-se de acordo com a informação disponível realizar uma comparação das empresas em análise com a performance da indústria, globalmente, por região ou setor de atividade. Verifica-se através da análise ao presente relatório, quais os fatores que permitem a criação de valor no setor agroindustrial de uma forma contínua para a cadeia de valor organizacional. Por outro lado, entre os diversos pontos a melhorar, considerando as organizações em análise, destaca-se a cultura de inovação e a digitalização dos processos de produção (Indústria 4.0). Pretende-se, com a aplicação prática do conhecimento gerado pelo presente relatório, a criação de ferramentas que constituam soluções para a melhoria da gestão da produção que promovam a introdução de métodos de inovação na cultura e performance organizacional de forma a tornar as organizações do setor competitivas e com impacto nos mercados internacionais

    Caracterização e Análise Energética de Empresas Agro-Alimentares

    Get PDF
    Através de um diagnóstico inicial baseado na análise do conhecimento, informação existente, recolha de informação e medição de parâmetros num conjunto de 60 empresas dos subsetores dos produtos cárneos, hortofrutícolas, lácteos e panificação, o presente relatório apresenta os resultados da caracterização energética em empresas do setor agroalimentar. Executando uma análise técnica ao estado da arte, através do estudo da organização, de acordo com a informação disponível, é realizada uma comparação das empresas em análise com a performance da indústria, globalmente, por região ou setor de atividade. Verifica-se, através da análise ao presente relatório, quais os fatores que permitem a criação de valor no setor agroindustrial de uma forma contínua para a cadeia de valor organizacional. Por outro lado, entre os diversos pontos a melhorar, considerando as organizações em análise, destaca-se a cultura de inovação e a digitalização dos processos de produção (Indústria 4.0). Pretende-se, com a aplicação prática do conhecimento gerado pelo presente relatório, a criação de ferramentas que constituam soluções para a melhoria da gestão da produção que promovam a introdução de métodos de inovação na cultura e performance organizacional de forma a tornar as organizações do setor competitivas e com impacto nos mercados internacionais
    corecore