14,525 research outputs found

    Structures and Bonding of Aluminum Dioxygen

    Get PDF
    Ab initio molecular orbital calculations on the structures of aluminum dioxygen have been performed using double-zeta plus polarization basis functions. The asymmetric beni AlOO isomer is found to be more stable than the symmetric bent OAlO isomer. The Al-O bond is predicted to be best described as covalent with a substantial ionic character

    Supersonic flow calculation using a Reynolds-stress and an eddy thermal diffusivity turbulence model

    Get PDF
    A second-order model for the velocity field and a two-equation model for the temperature field are used to calculate supersonic boundary layers assuming negligible real gas effects. The modeled equations are formulated on the basis of an incompressible assumption and then extended to supersonic flows by invoking Morkovin's hypothesis, which proposes that compressibility effects are completely accounted for by mean density variations alone. In order to calculate the near-wall flow accurately, correction functions are proposed to render the modeled equations asymptotically consistent with the behavior of the exact equations near a wall and, at the same time, display the proper dependence on the molecular Prandtl number. Thus formulated, the near-wall second order turbulence model for heat transfer is applicable to supersonic flows with different Prandtl numbers. The model is validated against flows with different Prandtl numbers and supersonic flows with free-stream Mach numbers as high as 10 and wall temperature ratios as low as 0.3. Among the flow cases considered, the momentum thickness Reynolds number varies from approximately 4,000 to approximately 21,000. Good correlation with measurements of mean velocity, temperature, and its variance is obtained. Discernible improvements in the law-of-the-wall are observed, especially in the range where the big-law applies

    A near-wall four-equation turbulence model for compressible boundary layers

    Get PDF
    A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers

    Evolution of the single-hole spectral function across a quantum phase transition in the anisotropic-triangular-lattice antiferromagnet

    Full text link
    We study the evolution of the single-hole spectral function when the ground state of the anisotropic-triangular-lattice antiferromagnet changes from the incommensurate magnetically-ordered phase to the spin-liquid state. In order to describe both of the ground states on equal footing, we use the large-N approach where the transition between these two phases can be obtained by controlling the quantum fluctuations via an 'effective' spin magnitude. Adding a hole into these ground states is described by a t-J type model in the slave-fermion representation. Implications of our results to possible future ARPES experiments on insulating frustrated magnets, especially Cs2_2CuCl4_4, are discussed.Comment: 8 pages, 7 figure

    Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors

    Full text link
    The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is for determining the gravitational energy. Neither of them can guarantee a positive energy in holonomic frames. In the small sphere approximation, it has been required that the quasilocal expression for the gravitational energy-momentum density should be proportional to the Bel-Robinson tensor BαβμνB_{\alpha\beta\mu\nu}. However, we propose a new tensor VαβμνV_{\alpha\beta\mu\nu} which is the sum of certain tensors SαβμνS_{\alpha\beta\mu\nu} and KαβμνK_{\alpha\beta\mu\nu}, it has certain properties so that it gives the same gravitational "energy-momentum" content as BαβμνB_{\alpha\beta\mu\nu} does. Moreover, we show that a modified Einstein pseudotensor turns out to be one of the Chen-Nester quasilocal expressions, while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou pseudotensor; these two modified pseudotensors have positive gravitational energy in a small region.Comment:

    Neural Network Model for Apparent Deterministic Chaos in Spontaneously Bursting Hippocampal Slices

    Full text link
    A neural network model that exhibits stochastic population bursting is studied by simulation. First return maps of inter-burst intervals exhibit recurrent unstable periodic orbit (UPO)-like trajectories similar to those found in experiments on hippocampal slices. Applications of various control methods and surrogate analysis for UPO-detection also yield results similar to those of experiments. Our results question the interpretation of the experimental data as evidence for deterministic chaos and suggest caution in the use of UPO-based methods for detecting determinism in time-series data.Comment: 4 pages, 5 .eps figures (included), requires psfrag.sty (included

    A Near-Wall Reynolds-Stress Closure without Wall Normals

    Get PDF
    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal

    Pressure Induced Hydration Dynamics of Membranes

    Full text link
    Pressure-jump initiated time-resolved x-ray diffraction studies of dynamics of the hydration of the hexagonal phase in biological membranes show that (i) the relaxation of the unit cell spacing is non-exponential in time; (ii) the Bragg peaks shift smoothly to their final positions without significant broadening or loss in crystalline order. This suggests that the hydration is not diffusion limited but occurs via a rather homogeneous swelling of the whole lattice, described by power law kinetics with an exponent β=1.3±0.2 \beta = 1.3 \pm 0.2.Comment: REVTEX 3, 10 pages,3 figures(available on request),#

    Frequent use of paracetamol and risk of allergic disease among women in an Ethiopian population

    Get PDF
    Introduction The hypothesis that paracetamol might increase the risk of asthma and other allergic diseases have gained support from a range of independent studies. However, in studies based in developed countries, the possibility that paracetamol and asthma are associated through aspirin avoidance is difficult to exclude. Objectives To explore this hypothesis among women in a developing country, where we have previously reported aspirin avoidance to be rare. Methods In 2005/6 a population based cohort of 1065 pregnant women was established in Butajira, Ethiopia and baseline demographic data collected. At 3 years post birth, an interview-based questionnaire administered to 945 (94%) of these women collected data on asthma, eczema, and hay fever in the past 12 month, frequency of paracetamol use and potential confounders. Allergen skin tests to Dermatophagoides pteronyssinus and cockroach were also performed. The independent effects of paracetamol use on allergic outcomes were determined using multiple logistic regression analysis. Findings The prevalence of asthma, eczema and hay fever was 1.7%, 0.9% and 3.8% respectively; of any one of these conditions 5.5%, and of allergen sensitization 7.8%. Paracetamol use in the past month was reported by 29%, and associations of borderline significance were seen for eczema (adjusted OR (95% CI) = 8.51 (1.68 to 43.19) for 1–3 tablets and 2.19 (0.36 to 13.38) for ≥4 tablets, compared to no tablets in the past month; overall p = 0.055) and for ‘any allergic condition’ (adjusted OR (95% CI) = 2.73 (1.22 to 6.11) for 1–3 tablets and 1.35 (0.67 to 2.70) for ≥4 tablets compared to 0 in the past month; overall p = 0.071). Conclusions This study provides further cross-sectional evidence that paracetamol use increases the risk of allergic disease
    corecore