10,667 research outputs found

    Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors

    Full text link
    The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is for determining the gravitational energy. Neither of them can guarantee a positive energy in holonomic frames. In the small sphere approximation, it has been required that the quasilocal expression for the gravitational energy-momentum density should be proportional to the Bel-Robinson tensor BαβμνB_{\alpha\beta\mu\nu}. However, we propose a new tensor VαβμνV_{\alpha\beta\mu\nu} which is the sum of certain tensors SαβμνS_{\alpha\beta\mu\nu} and KαβμνK_{\alpha\beta\mu\nu}, it has certain properties so that it gives the same gravitational "energy-momentum" content as BαβμνB_{\alpha\beta\mu\nu} does. Moreover, we show that a modified Einstein pseudotensor turns out to be one of the Chen-Nester quasilocal expressions, while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou pseudotensor; these two modified pseudotensors have positive gravitational energy in a small region.Comment:

    Nonequilibrium quantum criticality in open electronic systems

    Full text link
    A theory is presented of quantum criticality in open (coupled to reservoirs) itinerant electron magnets, with nonequilibrium drive provided by current flow across the system. Both departures from equilibrium at conventional (equilibrium) quantum critical points and the physics of phase transitions induced by the nonequilibrium drive are treated. Nonequilibrium-induced phase transitions are found to have the same leading critical behavior as conventional thermal phase transitions.Comment: 5 pages, 1 figur

    Kaplan-Narayanan-Neuberger lattice fermions pass a perturbative test

    Full text link
    We test perturbatively a recent scheme for implementing chiral fermions on the lattice, proposed by Kaplan and modified by Narayanan and Neuberger, using as our testing ground the chiral Schwinger model. The scheme is found to reproduce the desired form of the effective action, whose real part is gauge invariant and whose imaginary part gives the correct anomaly in the continuum limit, once technical problems relating to the necessary infinite extent of the extra dimension are properly addressed. The indications from this study are that the Kaplan--Narayanan--Neuberger (KNN) scheme has a good chance at being a correct lattice regularization of chiral gauge theories.Comment: LaTeX 18 pages, 3 figure

    Universal Statistics of the Scattering Coefficient of Chaotic Microwave Cavities

    Full text link
    We consider the statistics of the scattering coefficient S of a chaotic microwave cavity coupled to a single port. We remove the non-universal effects of the coupling from the experimental S data using the radiation impedance obtained directly from the experiments. We thus obtain the normalized, complex scattering coefficient whose Probability Density Function (PDF) is predicted to be universal in that it depends only on the loss (quality factor) of the cavity. We compare experimental PDFs of the normalized scattering coefficients with those obtained from Random Matrix Theory (RMT), and find excellent agreement. The results apply to scattering measurements on any wave chaotic system.Comment: 10 pages, 8 Figures, Fig.7 in Color, Submitted to Phys. Rev.

    On the Usability of Probably Approximately Correct Implication Bases

    Full text link
    We revisit the notion of probably approximately correct implication bases from the literature and present a first formulation in the language of formal concept analysis, with the goal to investigate whether such bases represent a suitable substitute for exact implication bases in practical use-cases. To this end, we quantitatively examine the behavior of probably approximately correct implication bases on artificial and real-world data sets and compare their precision and recall with respect to their corresponding exact implication bases. Using a small example, we also provide qualitative insight that implications from probably approximately correct bases can still represent meaningful knowledge from a given data set.Comment: 17 pages, 8 figures; typos added, corrected x-label on graph

    G protein-coupled receptor kinase 2 (GRK2) is localized to centrosomes and mediates epidermal growth factor-promoted centrosomal separation.

    Get PDF
    G protein-coupled receptor kinases (GRKs) play a central role in regulating receptor signaling, but recent studies suggest a broader role in modulating normal cellular functions. For example, GRK5 has been shown to localize to centrosomes and regulate microtubule nucleation and cell cycle progression. Here we demonstrate that GRK2 is also localized to centrosomes, although it has no role in centrosome duplication or microtubule nucleation. Of interest, knockdown of GRK2 inhibits epidermal growth factor receptor (EGFR)-mediated separation of duplicated centrosomes. This EGFR/GRK2-mediated process depends on the protein kinases mammalian STE20-like kinase 2 (Mst2) and Nek2A but does not involve polo-like kinase 1. In vitro analysis and dominant-negative approaches reveal that GRK2 directly phosphorylates and activates Mst2. Collectively these findings demonstrate that GRK2 is localized to centrosomes and plays a central role in mitogen-promoted centrosome separation most likely via its ability to phosphorylate Mst2

    The ZmRCP-1 promoter of maize provides root tip specific expression of transgenes in plantain

    Get PDF
    Background Bananas and plantains (Musa spp.) provide 25 % of the food energy requirements for more than 100 million people in Africa. Plant parasitic nematodes cause severe losses to the crop due to lack of control options. The sterile nature of Musa spp. hampers conventional breeding but makes the crop suitable for genetic engineering. A constitutively expressed synthetic peptide in transgenic plantain has provided resistance against nematodes. Previous work with the peptide in potato plants indicates that targeting expression to the root tip improves the efficacy of the defence mechanism. However, a promoter that will provide root tip specific expression of transgenes in a monocot plant, such as plantain, is not currently available. Here, we report the cloning and evaluation of the maize root cap-specific protein-1 (ZmRCP-1) promoter for root tip targeted expression of transgenes that provide a defence against plant parasitic nematodes in transgenic plantain. Results Our findings indicate that the maize ZmRCP-1 promoter delivers expression of β-glucuronidase (gusA) gene in roots but not in leaves of transgenic plantains. In mature old roots, expression of gusA gene driven by ZmRCP-1 becomes limited to the root cap. Invasion by the nematode Radopholus similis does not modify Root Cap-specific Protein-1 promoter activity. Conclusions Root cap-specific protein-1 promoter from maize can provide targeted expression of transgene for nematode resistance in transgenic plantain
    • …
    corecore